Cases on Technology Integration in Mathematics Education


Book Description

School-university partnerships have the potential to greatly benefit teaching and learning in PK-12 environments, as well as educator preparation programs. This collaboration is advantageous to teachers, counselors, and administrators. Professional Development Schools and Transformative Partnerships provides a comprehensive look at the design, implementation, and impact of educational initiatives between schools and universities. Including cases and research on existing collaborations, this publication addresses barriers and trends in order to provide direction for successful partnerships in the future. This book is an essential reference source for educational leaders in colleges, schools, and departments of education, as well as leaders of PK-12 schools.




Cases on Technology Integration in Mathematics Education


Book Description

Common Core education standards establish a clear set of specific ideas and skills that all students should be able comprehend at each grade level. In an effort to meet these standards, educators are turning to technology for improved learning outcomes. Cases on Technology and Common Core Mathematics provides a compilation of cases and vignettes about the application of technology in the classroom in order to enhance student understanding of math concepts. This book is a timely reference source for mathematics educators, educational technologists, and school district leaders employed in the mathematics education or educational technology fields.







Technology-enabled Mathematics Education


Book Description

Technology-enabled Mathematics Education explores how teachers of mathematics are using digital technologies to enhance student engagement in classrooms, from the early years through to the senior years of school. The research underpinning this book is grounded in real classrooms. The chapters offer ten rich case studies of mathematics teachers who have become exemplary users of technology. Each case study includes the voices of leaders, teachers and their students, providing insights into their practices, beliefs and perceptions of mathematics and technology-enabled teaching. These insights inform an exciting new theoretical model, the Technology Integration Pyramid, for guiding teachers and researchers as they endeavour to understand the complexities involved in planning for effective teaching with technology. This book is a unique resource for educational researchers and students studying primary and secondary mathematics teaching, as well as practising mathematics teachers.




Mathematics Education in the Digital Age


Book Description

The wide availability of digital educational resources for mathematics teaching and learning is indisputable, with some notable genres of technologies having evolved, such as graphing calculators, dynamic graphing, dynamic geometry and data visualization tools. But what does this mean for teachers of mathematics, and how do their roles evolve within this digital landscape? This essential book offers an international perspective to help bridge theory and practice, including coverage of networking theories, curriculum design, task implementation, online resources and assessment. Mathematics Education in the Digital Age details the impacts this digital age has, and will continue to have, on the parallel aspects of learning and teaching mathematics within formal education systems and settings. Written by a group of international authors, the chapters address the following themes: Mathematics teacher education and professional development Mathematics curriculum development and task design The assessment of mathematics Theoretical perspectives and methodologies/approaches for researching mathematics education in the digital age This book highlights not only the complex nature of the field, but also the advancements in theoretical and practical knowledge that is enabling the mathematics education community to continue to learn in this increasingly digital age. It is an essential read for all mathematics teacher educators and master teachers.




Technology in Mathematics Teaching


Book Description

This book comprises chapters featuring a state of the art of research on digital technology in mathematics education. The chapters are extended versions of a selection of papers from the Proceedings of the 13th International Conference on Technology in Mathematics Teaching (ICTMT-13), which was held in Lyon, France, from July 3rd to 6th. ICTMT-13 gathered together over one hundred participants from twenty countries sharing research and empirical results on the topical issues of technology and its potential to improve mathematics teaching and learning. The chapters are organised into 4 themed parts, namely assessment in mathematics education and technology, which was the main focus of the conference, innovative technology and approaches to mathematics education, teacher education and professional development toward the technology use, and mathematics teaching and learning experiences with technology. In 13 chapters contained in the book, prominent mathematics educators from all over the world present the most recent theoretical and practical advances on these themes This book is of particular interest to researchers, teachers, teacher educators and other actors interested in digital technology in mathematics education.




Mathematics Education and Technology-Rethinking the Terrain


Book Description

Mathematics Education and Technology-Rethinking the Terrain revisits the important 1985 ICMI Study on the influence of computers and informatics on mathematics and its teaching. The focus of this book, resulting from the seventeenth Study led by ICMI, is the use of digital technologies in mathematics teaching and learning in countries across the world. Specifically, it focuses on cultural diversity and how this diversity impinges on the use of digital technologies in mathematics teaching and learning. Within this focus, themes such as mathematics and mathematical practices; learning and assessing mathematics with and through digital technologies; teachers and teaching; design of learning environments and curricula; implementation of curricula and classroom practice; access, equity and socio-cultural issues; and connectivity and virtual networks for learning, serve to organize the study and bring it coherence. Providing a state-of-the-art view of the domain with regards to research, innovating practices and technological development, Mathematics Education and Technology-Rethinking the Terrain is of interest to researchers and all those interested in the role that digital technology plays in mathematics education.




Didactics of Mathematics as a Scientific Discipline


Book Description

Didactics of Mathematics as a Scientific Discipline describes the state of the art in a new branch of science. Starting from a general perspective on the didactics of mathematics, the 30 original contributions to the book, drawn from 10 different countries, go on to identify certain subdisciplines and suggest an overall structure or `topology' of the field. The book is divided into eight sections: (1) Preparing Mathematics for Students; (2) Teacher Education and Research on Teaching; (3) Interaction in the Classroom; (4) Technology and Mathematics Education; (5) Psychology of Mathematical Thinking; (6) Differential Didactics; (7) History and Epistemology of Mathematics and Mathematics Education; (8) Cultural Framing of Teaching and Learning Mathematics. Didactics of Mathematics as a Scientific Discipline is required reading for all researchers into the didactics of mathematics, and contains surveys and a variety of stimulating reflections which make it extremely useful for mathematics educators and teacher trainers interested in the theory of their practice. Future and practising teachers of mathematics will find much to interest them in relation to their daily work, especially as it relates to the teaching of different age groups and ability ranges. The book is also recommended to researchers in neighbouring disciplines, such as mathematics itself, general education, educational psychology and cognitive science.




Uses of Technology in Lower Secondary Mathematics Education


Book Description

This topical survey provides an overview of the current state of the art in technology use in mathematics education, including both practice-oriented experiences and research-based evidence, as seen from an international perspective. Three core themes are discussed: Evidence of effectiveness; Digital assessment; and Communication and collaboration. The survey’s final section offers suggestions for future trends in technology-rich mathematics education and provides a research agenda reflecting those trends. Predicting what lower secondary mathematics education might look like in 2025 with respect to the role of digital tools in curricula, teaching and learning, it examines the question of how teachers can integrate physical and virtual experiences to promote a deeper understanding of mathematics. The issues and findings presented here provide an overview of current research and offer a glimpse into a potential future characterized by the effective integration of technology to support mathematics teaching and learning at the lower secondary level.




Lifelong Technology-Enhanced Learning


Book Description

This book constitutes the proceedings of the 13th European Conference on Technology Enhanced Learning, EC-TEL 2018, held in Leeds, UK, in September 2018. The 42 full and short papers, 7 demo papers, and 23 poster papers presented in this volume were carefully reviewed and selected from 142 submissions. This year, the European Conference on Technology-Enhanced Learning (EC-TEL) will engage researchers, practitioners, educational developers, entrepreneurs and policy makers in a joint discussion on how to put science, technology and practice at the service of learning to embrace these challenges on the topic: Lifelong technology enhanced learning: Dealing with the complexity of 21st century challenges. /div Chapter "" is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.