Catalyst Deactivation 1997


Book Description

Catalyst Deactivation 1997 focused on 9 key topical areas: carbon deposition and coke formation, chemicals, environmental catalysis, modeling, petroleum processing, poisoning, syngas conversion, techniques, and thermal degradation. All of these areas were well represented at the meeting; moreover, several review articles were presented that provide perspectives on new research and development thrusts. The proceedings of the meeting are organized with six review and award articles at the front of the volume followed by topical articles a keynote, 5-6 oral, and 2-3 poster papers. A list of authors is provided at the end of the book. It should be emphasized that all of the papers were ranked and reviewed by members of the Scientific Committee.




Deactivation and Regeneration of Zeolite Catalysts


Book Description

In chemical processes, the progressive deactivation of solid catalysts is a major economic concern and mastering their stability has become as essential as controlling their activity and selectivity. For these reasons, there is a strong motivation to understand the mechanisms leading to any loss in activity and/or selectivity and to find out the efficient preventive measures and regenerative solutions that open the way towards cheaper and cleaner processes. This book covers in a comprehensive way both the fundamental and applied aspects of solid catalyst deactivation and encompasses the state-of-the-art in the field of reactions catalyzed by zeolites. This particular choice is justified by the widespread use of molecular sieves in refining, petrochemicals and organic chemicals synthesis processes, by the large variety in the nature of their active sites (acid, base, acid-base, redox, bifunctional) and especially by their peculiar features, in terms of crystallinity, structural order and textural properties, which make them ideal models for heterogeneous catalysis. The aim of this book is to be a critical review in the field of zeolite deactivation and regeneration, by collecting a series of contributions by experts in the field which describe the factors, explain the techniques to study the causes and suggest methods to prevent (or limit) catalyst deactivation. At the same time, an anthology of commercial processes and exemplar cases provides the reader with theoretical insights and practical hints on the deactivation mechanisms and draws attention to the key role played by the loss of activity on process design and industrial practice.




Basic Principles in Applied Catalysis


Book Description

Written by a team of internationally recognized experts, this book addresses the most important types of catalytic reactions and catalysts as used in industrial practice. Both applied aspects and the essential scientific principles are described. The main topics can be summarized as follows: heterogeneous, homogeneous and biocatalysis, catalyst preparation and characterization, catalytic reaction engineering and kinetics, catalyst deactivation and industrial perspective.







Advances in Catalyst Deactivation


Book Description

This book is a printed edition of the Special Issue "Advances in Catalyst Deactivation" that was published in Catalysts




Catalyst Deactivation 2001


Book Description

This proceedings contains the papers presented at the 9th International Symposium on Catalyst Deactivation, held in Lexington, KY, USA, on 7-10 October 2001.




Introduction to Catalysis and Industrial Catalytic Processes


Book Description

Introduces major catalytic processes including products from the petroleum, chemical, environmental and alternative energy industries Provides an easy to read description of the fundamentals of catalysis and some of the major catalytic industrial processes used today Offers a rationale for process designs based on kinetics and thermodynamics Alternative energy topics include the hydrogen economy, fuels cells, bio catalytic (enzymes) production of ethanol fuel from corn and biodiesel from vegetable oils Problem sets of included with answers available to faculty who use the book Review: "In less than 300 pages, it serves as an excellent introduction to these subjects whether for advanced students or those seeking to learn more about these subjects on their own time...Particularly useful are the succinct summaries throughout the book...excellent detail in the table of contents, a detailed index, key references at the end of each chapter, and challenging classroom questions..." (GlobalCatalysis.com, May 2016)




Deactivation of Heavy Oil Hydroprocessing Catalysts


Book Description

Written by a scientist and researcher with more than 25 years of experience in the field, this serves as a complete guide to catalyst activity loss during the hydroprocessing of heavy oils. Explores the physical and chemical properties of heavy oils and hydroprocessing catalysts; the mechanisms of catalyst deactivation; catalyst characterization by a variety of techniques and reaction conditions; laboratory and commercial information for model validations; and more Demonstrates how to develop correlations and models for a variety of reaction scales with step-by-step descriptions and detailed experimental data Contains important implications for increasing operational efficiencies within the petroleum industry An essential reference for professionals and researchers working in the refining industry as well as students taking courses on chemical reaction engineering







Experimental Methods for Evaluation of Hydrotreating Catalysts


Book Description

Presents detailed information and study cases on experiments on hydrotreating catalysts for the petroleum industry Catalytic hydrotreating (HDT) is a process used in the petroleum refining industry for upgrading hydrocarbon streams—removing impurities, eliminating metals, converting asphaltene molecules, and hydrocracking heavy fractions. The major applications of HDT in refinery operations include feed pretreatment for conversion processes, post-hydrotreating distillates, and upgrading heavy crude oils. Designing HDT processes and catalysts for successful commercial application requires experimental studies based on appropriate methodologies. Experimental Methods for Evaluation of Hydrotreating Catalysts provides detailed descriptions of experiments in different reaction scales for studying the hydrotreating of various petroleum distillates. Emphasizing step-by-step methodologies in each level of experimentation, this comprehensive volume presents numerous examples of evaluation methods, operating conditions, reactor and catalyst types, and process configurations. In-depth chapters describe experimental setup and procedure, analytical methods, calculations, testing and characterization of catalyst and liquid products, and interpretation of experiment data and results. The text describes experimental procedure at different levels of experimentation—glass reactor, batch reactor, continuous stirred tank reactor, and multiple scales of tubular reactors—using model compounds, middle distillates and heavy oil. This authoritative volume: Introduces experimental setups used for conducting research studies, such as type of operation, selection of reactor, and analysis of products Features examples focused on the evaluation of different reaction parameters and catalysts with a variety of petroleum feedstocks Provides experimental data collected from different reaction scales Includes experiments for determining mass transfer limitations and deviation from ideality of flow pattern Presents contributions from leading scientists and researchers in the field of petroleum refining Experimental Methods for Evaluation of Hydrotreating Catalysts is an indispensable reference for researchers and professionals working in the area of catalytic hydrotreating, as well as an ideal textbook for courses in fields such as chemical engineering, petrochemical engineering, and biotechnology.




Recent Books