CE-QUAL-W2


Book Description







Hydraulics of Dams and River Structures


Book Description

This book comprises the papers of the International Conference on Hydraulics of Dams and Rivers Structures, held in Tehran, 26-28 April 2004. The topics covered include air-water flows, intakes and outlets, hydrodynamic forces, energy dissipators, stepped spillways, scouring and sedimentation around structures, numerical approaches in river hydrody










Water Quality Modeling for Wasteload Allocations and TMDLs


Book Description

Complete, practical coverage of pollution control regulations and water quality modeling Water Quality Modeling for Wasteload Allocations and TMDLs provides practical guidance for engineers charged with determining the volume and character of wastewater that a body of water can receive without suffering environmental damage. Following the discussion on water pollution control regulations and their relationships to water quality modeling and wasteload allocation for determining the total maximum daily load (TMDL), the first half of the book focuses on quantifying the model coefficients to characterize physical, chemical, and biological processes of a variety of water quality problems. The remainder of the book guides engineers in the application of EPA-developed models for regulatory use. Presenting numerous case studies and a substantial amount of data, this comprehensive guide: * Covers practical applications of wasteload allocation * Provides guidance to develop technical information for obtaining National Pollution Discharge Elimination System (NPDES) permits * Demonstrates the application of STREAM, QUAL2E, WASP, and HAR03 Water Quality Modeling for Wasteload Allocations and TMDLs is an essential resource for state and federal water quality agencies, consulting engineering firms, publicly owned treatment works, environmental biologists and chemists, and public health officials involved with pollution control.










Sustainable Hydraulics in the Era of Global Change


Book Description

In an increasingly urbanized world, water systems must be designed and operated according to innovative standards in terms of climate adaptation, resource efficiency, sustainability and resilience. This grand challenge triggers unprecedented questions for hydro-environment research and engineering. Shifts in paradigms are urgently needed in the way we view (circular) water systems, water as a renewable energy (production and storage), risk management of floods, storms, sea level rise and droughts, as well as their consequences on water quality, morphodynamics (e.g., reservoir sedimentation, scour, sustainability of deltas) and the environment. Addressing these issues requires a deep understanding of basic processes in fluid mechanics, heat and mass transfer, surface and groundwater flow, among others.