Centrosomes and Spindle Pole Bodies


Book Description

Containing a comprehensive collection of convenient and quantitative methods for studying centrosomes, spindle pole bodies and related organelles, this text is a valuable resource for researchers and others interested in studying the role of these organelles in cell replication. Chapters outlining the role of these organelles in other cell functions are also included, and a wide variety of experimental systems for analyzing these organelles are presented. Detailed protocols for experiments are contained in each chapter for researchers to perform in their own labs. This volume outlines key methodologies used to analyze centrosomes and spindle pole bodies, their replication, and reproduction in the clear, well-illustrated style of the Methods in Cell Biology series.




Centrosome and Centriole


Book Description

This new volume of Methods in Cell Biology looks at methods for analyzing centrosomes and centrioles. Chapters cover such topics as methods to analyze centrosomes, centriole biogenesis and function in multi-ciliated cells, laser manipulation of centrosomes or CLEM, analysis of centrosomes in human cancers and tissues, proximity interaction techniques to study centrosomes, and genome engineering for creating conditional alleles in human cells. - Covers sections on model systems and functional studies, imaging-based approaches and emerging studies - Chapters are written by experts in the field - Cutting-edge material




Eukaryotic Membranes and Cytoskeleton


Book Description

The presence/absence of gene families with central roles in endomembrane and cytoskeleton dynamics in a variety of eukaryotic taxa and an understanding of eukaryote phylogeny allow the cellular machineries present in the last common ancestor of eukaryotes to be accurately reconstructed. Such a reconstruction is fundamental in order to understand eukaryotic diversification, since this is the ancestral cell from which all diversity arose. This book discusses the evolutionary origin and diversification of eukaryotic endomembranes and cytoskeleton from a cell biological and comparative genomic perspective.




The Centrosome in Cell Replication and Early Development


Book Description

Centrosomes play an integral role in the growth of cells and the ultimate development of many animals, and sometimes plants. In addition to the normal growth of cells, centrosomes can also play a key role in the spread of cancer and are of increased interest to both the genetics and oncology communities. Volume 49 of Current Topics in Developmental Biology will present all known research surrounding the centrosome, across a variety of systems, will be well referenced, and speculate where the research is headed. - Discusses centrosomes and cancer, centrosomes and early development, and molecular biology of the centrosome - Heavily illustrated, with many color figures - Chapters written by international leaders in the field







Mitosis and Meiosis Part A


Book Description

Mitosis and Meiosis, Part A, Volume 144, a new volume in the Methods in Cell Biology series, continues the legacy of this premier serial with quality chapters authored by leaders in the field. Unique to this updated volume are chapters on Analyzing the Spindle Assembly Checkpoint in human cell culture, an Analysis of CIN, a Functional analysis of the tubulin code in mitosis, Employing CRISPR/Cas9 genome engineering to dissect the molecular requirements for mitosis, Applying the auxin-inducible degradation (AID) system for rapid protein depletion in mammalian cells, Small Molecule Tools in Mitosis Research, Optogenetic control of mitosis with photocaged chemical, and more. - Contains contributions from experts in the field from across the world - Covers a wide array of topics on both mitosis and meiosis - Includes relevant, analysis based topics




Molecular Genetics in Yeast


Book Description




Principles of Cloning


Book Description

Principles of Cloning, Second Edition is the fully revised edition of the authoritative book on the science of cloning. The book presents the basic biological mechanisms of how cloning works and progresses to discuss current and potential applications in basic biology, agriculture, biotechnology, and medicine. Beginning with the history and theory behind cloning, the book goes on to examine methods of micromanipulation, nuclear transfer, genetic modification, and pregnancy and neonatal care of cloned animals. The cloning of various species—including mice, sheep, cattle, and non-mammals—is considered as well. The Editors have been involved in a number of breakthroughs using cloning technique, including the first demonstration that cloning works in differentiated cells done by the Recipient of the 2012 Nobel Prize for Physiology or Medicine – Dr John Gurdon; the cloning of the first mammal from a somatic cell – Drs Keith Campbell and Ian Wilmut; the demonstration that cloning can reset the biological clock - Drs Michael West and Robert Lanza; the demonstration that a terminally differentiated cell can give rise to a whole new individual – Dr Rudolf Jaenisch and the cloning of the first transgenic bovine from a differentiated cell – Dr Jose Cibelli. The majority of the contributing authors are the principal investigators on each of the animal species cloned to date and are expertly qualified to present the state-of-the-art information in their respective areas. - First and most comprehensive book on animal cloning, 100% revised - Describes an in-depth analysis of current limitations of the technology and research areas to explore - Offers cloning applications on basic biology, agriculture, biotechnology, and medicine




The Microtubule Cytoskeleton


Book Description

This book provides an overview on the organization and function of the microtubule cytoskeleton, which is essential to many cellular processes and profoundly linked to a range of human diseases. Covering basic concepts as well as molecular details, the book discusses how microtubules are nucleated and organized into ordered arrays, at different cell cycle stages and in distinct cell types. In addition, the book highlights how defects in the microtubule cytoskeleton are linked to diseases such as neurodevelopmental disorders. The book is intended for students, graduates and more senior researchers in cell and developmental biology as well as for medical doctors.




Cells: Molecules and Mechanisms


Book Description

"Yet another cell and molecular biology book? At the very least, you would think that if I was going to write a textbook, I should write one in an area that really needs one instead of a subject that already has multiple excellent and definitive books. So, why write this book, then? First, it's a course that I have enjoyed teaching for many years, so I am very familiar with what a student really needs to take away from this class within the time constraints of a semester. Second, because it is a course that many students take, there is a greater opportunity to make an impact on more students' pocketbooks than if I were to start off writing a book for a highly specialized upper- level course. And finally, it was fun to research and write, and can be revised easily for inclusion as part of our next textbook, High School Biology."--Open Textbook Library.