Characterization of Metal and Polymer Surfaces V1


Book Description

Characterization of Metal and Polymer Surfaces, Volume 1: Metal Surfaces presents the proceedings of the Symposium on Advances in Characterization of Metal and Polymer Surfaces, held in New York, on April 5–8, 1976. This book provides information pertinent to surface science and discusses the applications of surface analyses to polymer technology. Organized into five parts encompassing 19 chapters, this compilation of papers starts with an overview of the important innovations of surface analyses and discusses the possible applications of each method to polymer technology. This text then explores atom-probe field ion microscopy, which is the most sensitive micro-analytical tool that combines the single atom resolution of a field ion microscope with mass spectrometric single ion identification. Other chapters discuss the application of Mössbauer spectroscopy as a technique for studying corrosion phenomena. The final chapter deals with the capabilities and limitations of the method of inelastic electron tunnelling. This book is a valuable resource for analytical and polymer chemists.




Characterization of Metal and Polymer Surfaces V2


Book Description

Characterization of Metal and Polymer Surfaces, Volume 2: Polymer Surfaces presents the proceedings of the Symposium on Advances in Characterization of Metal and Polymer Surfaces, held in New York, on April 5–8, 1976. This book provides information pertinent to surface science and discusses the applications of surface analyses to polymer technology. Organized into four parts encompassing 21 chapters, this volume starts with an overview of the measurement of binding energies and chemical shifts, which remain a relevant aspect of electron microscopy for organic and inorganic compounds. This text then explores the capability of electron spectroscopy for chemical analysis (ESCA) as a spectroscopic tool that enables the features of structure and bonding in surface, subsurface, and bulk regions of polymer systems to be elaborated. Other chapters consider the surface and interfacial properties of polymers, which are significant in various biomedical applications. This book is a valuable resource for analytical and polymer chemists.










Polymer Surfaces and Interfaces: Characterization, Modification and Application


Book Description

Polymeric materials are used for a legion of applications in a wide array of technological areas, and their proper surface/interface characteristics are of cardinal importance for their applications. Therefore, the need to characterize polymer surfaces/interfaces and their suitable modification to impart desired characteristics is quite patent. This book chronicles the proceedings of the Symposium on Polymer Surfaces and Interfaces: Characterization, Modification and Application held as a part of the Society of Plastics Engineers Annual Technical Conference, Boston, May 7--11, 1995. The articles in this book address many aspects of polymer surfaces and interfaces. Topics covered include: various ways (chemical, photochemical, laser, flame, corona) to modify polymer surfaces; modification of contact lens surfaces; various ways to analyze/characterize polymer surfaces; metal/polymer interfaces; metal/polyimide adhesion; metal/self-assembled organic monolayer interfaces; polymer alignment layers for liquid crystals; alignment of liquid crystal surfaces; polyimide alignment layers; molecular re-orientation of polymer surfaces; plasma polymerized organic coatings; epoxy/fiber interphase; epoxy underfill materials for packaging integrated circuits; transport in polymers; polymer miscibility; and cell adhesion.




Polymer Surface Characterization


Book Description

This fully updated edition provides a broad approach to the surface analysis of polymers being of high technological interest. Modern analytical techniques, potential applications and recent advances in instrumental apparatus are discussed. The self-consistent chapters are devoted to spectroscopic and microscopic techniques which represent powerful tools for the characterization of morphology and chemical, physical, mechanical properties of polymer surfaces, interfaces, and thin fi lms. Selection of techniques which can properly address very shallow depth of surfaces, spanning from few angstroms to tens of nanometers Interaction of polymer surfaces with their surroundings is pointed out as a critical issue for specifi c applications




The Interfacial Interactions in Polymeric Composites


Book Description

Polymer composites represent materials of great and of continuously growing importance. Their potential for application appears to be limitless. They have been the subject of numerous studies both at academic and industrial levels. Much progress has been made in the incisive formulation of composites; sophisticated methods of property evaluation have been developed in the past decade and many, largely empirical solutions have been proposed to resolve the problem of their long-term performance under typical conditions of use (i. e. the use of silane or titane coupling agents to enhance adhesion within composite materials). Assuredly one of the most essential factors in the performance of these systems is the condition of the interface and interphase among the constituents of a given system. It has become clear that it is the interface/interphase, and the interactions which take place in this part of a system, which determine to a significant degree the initial properties of the material. In order to achieve leadership in the formulation and application of polymer composites, it is evident that in depth understanding of interfacial and interphase phenomena becomes a prerequisite.




Characterization and Failure Analysis of Plastics


Book Description

The selection and application of engineered materials is an integrated process that requires an understanding of the interaction between materials properties, manufacturing characteristics, design considerations, and the total life cycle of the product. This reference book on engineering plastics provides practical and comprehensive coverage on how the performance of plastics is characterized during design, property testing, and failure analysis. The fundamental structure and properties of plastics are reviewed for general reference, and detailed articles describe the important design factors, properties, and failure mechanisms of plastics. The effects of composition, processing, and structure are detailed in articles on the physical, chemical, thermal, and mechanical properties. Other articles cover failure mechanisms such as: crazing and fracture; impact loading; fatigue failure; wear failures, moisture related failure; organic chemical related failure; photolytic degradation; and microbial degradation. Characterization of plastics in failure analysis is described with additional articles on analysis of structure, surface analysis, and fractography.




Molecular Characterization of Polymers


Book Description

Molecular Characterization of Polymers presents a range of advanced and cutting-edge methods for the characterization of polymers at the molecular level, guiding the reader through theory, fundamentals, instrumentation, and applications, and supporting the end goal of efficient material selection and improved material performance. Each chapter focuses on a specific technique or family of techniques, including the different areas of chromatography, field flow fractionation, long chain branching, static and dynamic light scattering, mass spectrometry, NMR, X-Ray and neutron scattering, polymer dilute solution viscometry, microscopy, and vibrational spectroscopy. In each case, in-depth coverage explains how to successfully implement and utilize the technique. This practical resource is highly valuable to researchers and advanced students in polymer science, materials science, and engineering, and to those from other disciplines and industries who are unfamiliar with polymer characterization techniques. - Introduces a range of advanced characterization methods, covering aspects such as molecular weight, polydispersity, branching, composition, and tacticity - Enables the reader to understand and to compare the available technique, and implement the selected technique(s), with a view to improving properties of the polymeric material - Establishes a strong link between basic principles, characterization techniques, and real-life applications




Polymer Analysis


Book Description