Chemical Formulation


Book Description

Chemical formulation can be traced back to Stone Age times, when hunter-gatherers attached flint arrowheads to shafts using a resin made from birch bark and beeswax. Today, formulated preparations are part of everyday life. Formulations based on surfactants are by far the most prolific, from shampoos and shower gels to emulsion paint and polishes. This book discusses the chemical technology of surfactants and related chemicals, using over forty examples of everyday products. Some basic theory on surface chemistry, molecular interactions and surfactant function is included to aid understanding. Chemical Formulation: An Overview of Surfactant-based Preparations Used in Everyday Life then goes on to look at wider aspects such as surfactant manufacture, raw materials, environment, sustainability, analysis and testing. Throughout, common chemical names are used for formulation chemicals, further aiding the readability of the book. Bridging the gap between theory and application, this book will be invaluable to anyone wishing to broaden their knowledge of applied chemistry, including students on A level, BTEC and technician courses. It will also be of benefit to those new to the formulation industry.




Chemical Formulation


Book Description

Chemical formulation can be traced back to Stone Age times, when hunter-gatherers attached flint arrowheads to shafts using a resin made from birch bark and beeswax. Today, formulated preparations are part of everyday life. Formulations based on surfactants are by far the most prolific, from shampoos and shower gels to emulsion paint and polishes. This book discusses the chemical technology of surfactants and related chemicals, using over forty examples of everyday products. Some basic theory on surface chemistry, molecular interactions and surfactant function is included to aid understanding. Chemical Formulation: An Overview of Surfactant-based Preparations Used in Everyday Life then goes on to look at wider aspects such as surfactant manufacture, raw materials, environment, sustainability, analysis and testing. Throughout, common chemical names are used for formulation chemicals, further aiding the readability of the book. Bridging the gap between theory and application, this book will be invaluable to anyone wishing to broaden their knowledge of applied chemistry, including students on A level, BTEC and technician courses. It will also be of benefit to those new to the formulation industry.




Essential Chemistry for Formulators of Semisolid and Liquid Dosages


Book Description

A needed resource for pharmaceutical scientists and cosmetic chemists, Essential Chemistry for Formulators of Semisolid and Liquid Dosages provides insight into the basic chemistry of mixing different phases and test methods for the stability study of nonsolid formulations. The book covers foundational surface/colloid chemistry, which forms the necessary background for making emulsions, suspensions, solutions, and nano drug delivery systems, and the chemistry of mixing, which is critical for further formulation of drug delivery systems into semisolid (gels, creams, lotions, and ointments) or liquid final dosages. Expanding on these foundational principles, this useful guide explores stability testing methods, such as particle size, rheological/viscosity, microscopy, and chemical, and closes with a valuable discussion of regulatory issues. Essential Chemistry for Formulators of Semisolid and Liquid Dosages offers scientists and students the foundation and practical guidance to make and analyze semisolid and liquid formulations. - Unique coverage of the underlying chemistry that makes possible stable dosages - Quality content written by experienced experts from the drug development industry - Valuable information for academic and industrial scientists developing topical and liquid dosage formulations for pharmaceutical as well as skin care and cosmetic products




Pharmaceutical Formulation


Book Description

Formulation is a key step in the drug design process, where the active drug is combined with other substances that maximise the therapeutic potential, safety and stability of the final medicinal product. Modern formulation science deals with biologics as well as small molecules. Regulatory and quality demands, in addition to advances in processing technologies, result in growing challenges as well as possibilities for the field. Pharmaceutical Formulation provides an up to date source of information for all who wish to understand the principles and practice of formulation in the drug industry. The book provides an understanding of the links between formulation theory and the practicalities of processing in a commercial environment, giving researchers the knowledge to produce effective pharmaceutical products that can be approved and manufactured. The first chapters introduce readers to different dosage forms, including oral liquid products, topical products and solid dosage forms such as tablets and capsules. Subsequent chapters cover pharmaceutical coatings, controlled release drug delivery and dosage forms designed specifically for paediatric and geriatric patients. The final chapter provides an introduction to the vital role intellectual property plays in drug development. Covering modern processing methods and recent changes in the regulatory and quality demands of the industry, Pharmaceutical Formulation is an essential, up to date resource for students and researchers working in academia and in the pharmaceutical industry.




Cosmetic Formulation


Book Description

Cosmetics are the most widely applied products to the skin and include creams, lotions, gels and sprays. Their formulation, design and manufacturing ranges from large cosmetic houses to small private companies. This book covers the current science in the formulations of cosmetics applied to the skin. It includes basic formulation, skin science, advanced formulation, and cosmetic product development, including both descriptive and mechanistic content with an emphasis on practical aspects. Key Features: Covers cosmetic products/formulation from theory to practice Includes case studies to illustrate real-life formulation development and problem solving Offers a practical, user-friendly approach, relying on the work of recognized experts in the field Provides insights into the future directions in cosmetic product development Presents basic formulation, skin science, advanced formulation and cosmetic product development




Chemistry 2e


Book Description

Chemistry 2e is designed to meet the scope and sequence requirements of the two-semester general chemistry course. The textbook provides an important opportunity for students to learn the core concepts of chemistry and understand how those concepts apply to their lives and the world around them. The book also includes a number of innovative features, including interactive exercises and real-world applications, designed to enhance student learning. The second edition has been revised to incorporate clearer, more current, and more dynamic explanations, while maintaining the same organization as the first edition. Substantial improvements have been made in the figures, illustrations, and example exercises that support the text narrative. Changes made in Chemistry 2e are described in the preface to help instructors transition to the second edition.




NTP GMM.


Book Description




Formulation Technology


Book Description

Many chemical substances or compounds - organic or inorganic, natural or synthetic - are not used in their pure form. In order for the active ingredient to be most effective or to obtain the ideal delivery form for the market, the actual synthesis and purification steps are followed by formulation to give end products that range from powders, agglomerates, and granules to suspensions, emulsions, microemulsions, microcapsules, instant preparations, liposomes, and tablets. Formulation combines colloid and surface chemistry with chemical process engineering; sometimes it consists of a simple mixing operation, sometimes it requires an entire series of rather complicated engineering procedures such as comminution, dispersion, emulsification, agglomeration or drying. This book covers basic physico-chemical theory as well as its applications in the chemical industry for the production of pharmaceuticals, agrochemicals, pigments and dyes, food, detergents, cosmetics and many other products; it also provides chemists and chemical engineers with the necessary practical tools for the understanding of the structure/ activity relationship.




Modeling of Atmospheric Chemistry


Book Description

Mathematical modeling of atmospheric composition is a formidable scientific and computational challenge. This comprehensive presentation of the modeling methods used in atmospheric chemistry focuses on both theory and practice, from the fundamental principles behind models, through to their applications in interpreting observations. An encyclopaedic coverage of methods used in atmospheric modeling, including their advantages and disadvantages, makes this a one-stop resource with a large scope. Particular emphasis is given to the mathematical formulation of chemical, radiative, and aerosol processes; advection and turbulent transport; emission and deposition processes; as well as major chapters on model evaluation and inverse modeling. The modeling of atmospheric chemistry is an intrinsically interdisciplinary endeavour, bringing together meteorology, radiative transfer, physical chemistry and biogeochemistry, making the book of value to a broad readership. Introductory chapters and a review of the relevant mathematics make this book instantly accessible to graduate students and researchers in the atmospheric sciences.




Formulation and Stoichiometry


Book Description

The purpose of this book is to interpret more sensitively some of the offerings of the standard text book of general chemistry. As a supplement thereto, it covers various aspects of formulation and stoichiometry that are frequently treated far too perfunctorily or, in many instances, are not considered at all. The inadequate attention often accorded by the comprehensive text to many topics within its proper purview arises, understandably enough, from the numerous broad and highly varied objectives set for the first year of the curriculum for modern chemistry in colleges and universities. For the serious student this means, more often than not, the frustrations of questions unanswered. The amplification that this book proffers in the immediate area of its subject covers the equations representing internal redox reactions, not only of the simple but, also, of the multiple disproportionations of which the complexities often discourage an undertaking despite the challenge they offer: distinctions to be observed in the balancing of equations in con trasting alkali-basic and ammonia-basic reaction media; quantitative contributions made by the ionization or dissociation effects of electrolytes to the colligative properties of their solutions; intensive application of the universal reaction principle of chemical equivalence to the stoichiometry of oxidation and reduction.