Chemical Looping Systems for Fossil Energy Conversions


Book Description

This book presents the current carbonaceous fuel conversion technologies based on chemical looping concepts in the context of traditional or conventional technologies. The key features of the chemical looping processes, their ability to generate a sequestration-ready CO2 stream, are thoroughly discussed. Chapter 2 is devoted entirely to the performance of particles in chemical looping technology and covers the subjects of solid particle design, synthesis, properties, and reactive characteristics. The looping processes can be applied for combustion and/or gasification of carbon-based material such as coal, natural gas, petroleum coke, and biomass directly or indirectly for steam, syngas, hydrogen, chemicals, electricity, and liquid fuels production. Details of the energy conversion efficiency and the economics of these looping processes for combustion and gasification applications in contrast to those of the conventional processes are given in Chapters 3, 4, and 5.Finally, Chapter 6 presents additional chemical looping applications that are potentially beneficial, including those for H2 storage and onboard H2 production, CO2 capture in combustion flue gas, power generation using fuel cell, steam-methane reforming, tar sand digestion, and chemicals and liquid fuel production. A CD is appended to this book that contains the chemical looping simulation files and the simulation results based on the ASPEN Plus software for such reactors as gasifier, reducer, oxidizer and combustor, and for such processes as conventional gasification processes, Syngas Chemical Looping Process, Calcium Looping Process, and Carbonation-Calcination Reaction (CCR) Process. Note: CD-ROM/DVD and other supplementary materials are not included as part of eBook file.




Reactor and Process Design in Sustainable Energy Technology


Book Description

Reactor Process Design in Sustainable Energy Technology compiles and explains current developments in reactor and process design in sustainable energy technologies, including optimization and scale-up methodologies and numerical methods. Sustainable energy technologies that require more efficient means of converting and utilizing energy can help provide for burgeoning global energy demand while reducing anthropogenic carbon dioxide emissions associated with energy production. The book, contributed by an international team of academic and industry experts in the field, brings numerous reactor design cases to readers based on their valuable experience from lab R&D scale to industry levels. It is the first to emphasize reactor engineering in sustainable energy technology discussing design. It provides comprehensive tools and information to help engineers and energy professionals learn, design, and specify chemical reactors and processes confidently. - Emphasis on reactor engineering in sustainable energy technology - Up-to-date overview of the latest reaction engineering techniques in sustainable energy topics - Expert accounts of reactor types, processing, and optimization - Figures and tables designed to comprehensively present concepts and proceduresHundreds of citations drawing on many most recent and previously published works on the subject




Energy Conversion Engineering


Book Description

This unique textbook equips students with the theoretical and practical tools needed to model, design, and build efficient and clean low-carbon energy systems. Students are introduced to thermodynamics principles including chemical and electrochemical thermodynamics, moving onto applications in real-world energy systems, demonstrating the connection between fundamental concepts and theoretical analysis, modelling, application, and design. Topics gradually increase in complexity, nurturing student confidence as they build towards the use of advanced concepts and models for low to zero carbon energy conversion systems. The textbook covers conventional and emerging renewable energy conversion systems, including efficient fuel cells, carbon capture cycles, biomass utilisation, geothermal and solar thermal systems, hydrogen and low-carbon fuels. Featuring numerous worked examples, over 100 multi-component homework problems, and online instructor resources including lecture slides, solutions, and sample term projects, this textbook is the perfect teaching resource for an advanced undergraduate and graduate-level course in energy conversion engineering.




Calcium and Chemical Looping Technology for Power Generation and Carbon Dioxide (CO2) Capture


Book Description

Calcium and Chemical Looping Technology for Power Generation and Carbon Dioxide (CO2) Capture reviews the fundamental principles, systems, oxygen carriers, and carbon dioxide carriers relevant to chemical looping and combustion. Chapters review the market development, economics, and deployment of these systems, also providing detailed information on the variety of materials and processes that will help to shape the future of CO2 capture ready power plants. - Reviews the fundamental principles, systems, oxygen carriers, and carbon dioxide carriers relevant to calcium and chemical looping - Provides a lucid explanation of advanced concepts and developments in calcium and chemical looping, high pressure systems, and alternative CO2 carriers - Presents information on the market development, economics, and deployment of these systems




Handbook of Clean Energy Systems, 6 Volume Set


Book Description

The Handbook of Clean Energy Systems brings together an international team of experts to present a comprehensive overview of the latest research, developments and practical applications throughout all areas of clean energy systems. Consolidating information which is currently scattered across a wide variety of literature sources, the handbook covers a broad range of topics in this interdisciplinary research field including both fossil and renewable energy systems. The development of intelligent energy systems for efficient energy processes and mitigation technologies for the reduction of environmental pollutants is explored in depth, and environmental, social and economic impacts are also addressed. Topics covered include: Volume 1 - Renewable Energy: Biomass resources and biofuel production; Bioenergy Utilization; Solar Energy; Wind Energy; Geothermal Energy; Tidal Energy. Volume 2 - Clean Energy Conversion Technologies: Steam/Vapor Power Generation; Gas Turbines Power Generation; Reciprocating Engines; Fuel Cells; Cogeneration and Polygeneration. Volume 3 - Mitigation Technologies: Carbon Capture; Negative Emissions System; Carbon Transportation; Carbon Storage; Emission Mitigation Technologies; Efficiency Improvements and Waste Management; Waste to Energy. Volume 4 - Intelligent Energy Systems: Future Electricity Markets; Diagnostic and Control of Energy Systems; New Electric Transmission Systems; Smart Grid and Modern Electrical Systems; Energy Efficiency of Municipal Energy Systems; Energy Efficiency of Industrial Energy Systems; Consumer Behaviors; Load Control and Management; Electric Car and Hybrid Car; Energy Efficiency Improvement. Volume 5 - Energy Storage: Thermal Energy Storage; Chemical Storage; Mechanical Storage; Electrochemical Storage; Integrated Storage Systems. Volume 6 - Sustainability of Energy Systems: Sustainability Indicators, Evaluation Criteria, and Reporting; Regulation and Policy; Finance and Investment; Emission Trading; Modeling and Analysis of Energy Systems; Energy vs. Development; Low Carbon Economy; Energy Efficiencies and Emission Reduction. Key features: Comprising over 3,500 pages in 6 volumes, HCES presents a comprehensive overview of the latest research, developments and practical applications throughout all areas of clean energy systems, consolidating a wealth of information which is currently scattered across a wide variety of literature sources. In addition to renewable energy systems, HCES also covers processes for the efficient and clean conversion of traditional fuels such as coal, oil and gas, energy storage systems, mitigation technologies for the reduction of environmental pollutants, and the development of intelligent energy systems. Environmental, social and economic impacts of energy systems are also addressed in depth. Published in full colour throughout. Fully indexed with cross referencing within and between all six volumes. Edited by leading researchers from academia and industry who are internationally renowned and active in their respective fields. Published in print and online. The online version is a single publication (i.e. no updates), available for one-time purchase or through annual subscription.




Multiphase Reactor Engineering for Clean and Low-Carbon Energy Applications


Book Description

Provides a comprehensive review on the brand-new development of several multiphase reactor techniques applied in energy-related processes Explains the fundamentals of multiphase reactors as well as the sophisticated applications Helps the reader to understand the key problems and solutions of clean coal conversion techniques Details the emerging processes for novel refining technology, clean coal conversion techniques, low-cost hydrogen productions and CO2 capture and storage Introduces current energy-related processes and links the basic principles of emerging processes to the features of multiphase reactors providing an overview of energy conversion in combination with multiphase reactor engineering Includes case studies of novel reactors to illustrate the special features of these reactors




Chemical Looping Partial Oxidation


Book Description

This is the first comprehensive guide to the principles and techniques of chemical looping partial oxidation. With authoritative explanations from a pioneer of the chemical looping process, you will: • Gain a holistic overview of metal oxide reaction engineering, with coverage of ionic diffusion, nanostructure formation, morphological evolution, phase equilibrium, and recyclability properties of metal oxides during redox reactions • Learn about the gasification of solid fuels, the reforming of natural gas, and the catalytic conversion of methane to olefins • Understand the importance of reactor design and process integration in enabling metal oxide oxygen carriers to produce desired products • Discover other applications of catalytic metal oxides, including the production of maleic anhydride and solar energy conversions Aspen Plus® simulation software and results accompany the book online. This is an invaluable reference for researchers and industry professionals in the fields of chemical, energy and environmental engineering, and students studying process design and optimization.




Thermochemical Conversion Processes for Solid Fuels and Renewable Energies


Book Description

It is widely believed that a large proportion of greenhouse gas emissions originated anthropogenically from the use of fossil fuels with additional contributions coming from manufactured materials, deforestation, soil erosion, and agriculture (including livestock). The global society actively supports measures to create a flexible and low-carbon energy economy to attenuate climate change and its devastating environmental consequences. In this Special Issue, the recent advancements in the next-generation thermochemical conversion processes for solid fuels and renewable energies (e.g., the operational flexibility of co-combustion of biomass and lignite, integrated solar combined cycle power plants, and advanced gasification systems such as the sorption-enhanced gasification and the chemical looping gasification) were shown.




Advances in Carbon Management Technologies


Book Description

Advances in Carbon Management Technologies comprises 43 chapters contributed by experts from all over the world. Volume 1 of the book, containing 23 chapters, discusses the status of technologies capable of yielding substantial reduction of carbon dioxide emissions from major combustion sources. Such technologies include renewable energy sources that can replace fossil fuels and technologies to capture CO2 after fossil fuel combustion or directly from the atmosphere, with subsequent permanent long-term storage. The introductory chapter emphasizes the gravity of the issues related to greenhouse gas emissionglobal temperature correlation, the state of the art of key technologies and the necessary emission reductions needed to meet international warming targets. Section 1 deals with global challenges associated with key fossil fuel mitigation technologies, including removing CO2 from the atmosphere, and emission measurements. Section 2 presents technological choices for coal, petroleum, and natural gas for the purpose of reducing carbon footprints associated with the utilization of such fuels. Section 3 deals with promising contributions of alternatives to fossil fuels, such as hydropower, nuclear, solar photovoltaics, and wind. Chapter 19 of this book is freely available as a downloadable Open Access PDF at http://www.taylorfrancis.com under a Creative Commons Attribution-Non Commercial-No Derivatives (CC-BY-NC-ND) 4.0 license.




Combustion Chemistry and the Carbon Neutral Future


Book Description

As the demands for cleaner, more efficient, reduced and zero carbon emitting transportation increase, the traditional focus of Combustion Chemistry research is stretching and adapting to help provide solutions to these contemporary issues. Combustion Chemistry and the Carbon Neutral Future: What will the Next 25 Years of Research Require? presents a guide to current research in the field and an exploration of possible future steps as we move towards cleaner, greener and reduced carbon combustion chemistry. Beginning with a discussion of engine emissions and soot, the book goes on to discuss a range of alternative fuels, including hydrogen, ammonia, small alcohols and other bio-oxygenates, natural gas, syngas and synthesized hydrocarbon fuels. Methods for predicting and improving efficiency and sustainability, such as low temperature and catalytic combustion, chemical looping, supercritical fluid combustion, and diagnostic monitoring even at high pressure, are then explored. Some novel aspects of biomass derived aviation fuels and combustion synthesis are also covered. Combining the knowledge and experience of an interdisciplinary team of experts in the field, Combustion Chemistry and the Carbon Neutral Future: What will the Next 25 Years of Research Require? is an insightful guide to current and future focus areas for combustion chemistry researchers in line with the transition to greener, cleaner technologies. - Provides insight on current developments in combustion chemistry as a tool for supporting a reduced-carbon future - Reviews modeling and diagnostic tools, in addition to key approaches and alternative fuels - Includes projections for the future from leaders in the field, pointing current and prospective researchers to potentially fruitful areas for exploration