Extractive Metallurgy of Titanium


Book Description

Extractive Metallurgy of Titanium: Conventional and Recent Advances in Extraction and Production of Titanium Metal contains information on current and developing processes for the production of titanium. The methods for producing Ti metal are grouped into two categories, including the reduction of TiCl4 and the reduction of TiO2, with their processes classified as either electrochemical or thermochemical. Descriptions of each method or process include both the fundamental principles of the method and the engineering challenges in their practice. In addition, a review of the chemical and physical characteristics of the product produced by each method is included. Sections cover the purity of titanium metal produced based on ASTM and other industry standards, energy consumption, cost and the potential environmental impacts of the processes. - Provides information on new and developing low cost, high integrity methods for titanium metal production - Discusses new markets for titanium due to the decreased cost of newly developed processes - Covers specific information on new methods, including the chemical and physical characteristics produced




Titanium Powder Metallurgy


Book Description

Titanium Powder Metallurgy contains the most comprehensive and authoritative information for, and understanding of, all key issues of titanium powder metallurgy (Ti PM). It summarizes the past, reviews the present and discusses the future of the science and technology of Ti PM while providing the world titanium community with a unique and comprehensive book covering all important aspects of titanium powder metallurgy, including powder production, powder processing, green shape formation, consolidation, property evaluation, current industrial applications and future developments. It documents the fundamental understanding and technological developments achieved since 1937 and demonstrates why powder metallurgy now offers a cost-effective approach to the near net or net shape fabrication of titanium, titanium alloys and titanium metal matrix composites for a wide variety of industrial applications. - Provides a comprehensive and in-depth treatment of the science, technology and industrial practice of titanium powder metallurgy - Each chapter is delivered by the most knowledgeable expert on the topic, half from industry and half from academia, including several pioneers in the field, representing our current knowledge base of Ti PM. - Includes a critical review of the current key fundamental and technical issues of Ti PM. - Fills a critical knowledge gap in powder metal science and engineering and in the manufacture of titanium metal and alloys




Titanium Alloys


Book Description

Titanium alloys, due to unique physical and chemical properties (mainly high relative strength combined with very good corrosion resistance), are considered as an important structural metallic material used in hi-tech industries (e.g. aerospace, space technology). This book provides information on new manufacturing and processing methods of single- and two-phase titanium alloys. The eight chapters of this book are distributed over four sections. The first section (Introduction) indicates the main factors determining application areas of titanium and its alloys. The second section (Manufacturing, two chapters) concerns modern production methods for titanium and its alloys. The third section (Thermomechanical and surface treatment, three chapters) covers problems of thermomechanical processing and surface treatment used for single- and two-phase titanium alloys. The fourth section (Machining, two chapters) describes the recent results of high speed machining of Ti-6Al-4V alloy and the possibility of application of sustainable machining for titanium alloys.




Powder Metallurgy of Titanium


Book Description

Powder Processing, Consolidation and Metallurgy of Titanium Selected, peer reviewed papers from the Symposium on Powder Processing and Metallurgy of Titanium, December 4-7, 2011, Brisbane, Australia




Titanium


Book Description

Designed to support the need of engineering, management, and other professionals for information on titanium by providing an overview of the major topics, this book provides a concise summary of the most useful information required to understand titanium and its alloys. The author provides a review of the significant features of the metallurgy and application of titanium and its alloys. All technical aspects of the use of titanium are covered, with sufficient metals property data for most users. Because of its unique density, corrosion resistance, and relative strength advantages over competing materials such as aluminum, steels, and superalloys, titanium has found a niche in many industries. Much of this use has occurred through military research, and subsequent applications in aircraft, of gas turbine engines, although more recent use features replacement joints, golf clubs, and bicycles.Contents include: A primer on titanium and its alloys, Introduction to selection of titanium alloys, Understanding titanium's metallurgy and mill products, Forging and forming, Castings, Powder metallurgy, Heat treating, Joining technology and practice, Machining, Cleaning and finishing, Structure/processing/property relationships, Corrosion resistance, Advanced alloys and future directions, Appendices: Summary table of titanium alloys, Titanium alloy datasheets, Cross-reference to titanium alloys, Listing of selected specification and standardization organizations, Selected manufacturers, suppliers, services, Corrosion data, Machining data.




Titanium and Titanium Alloys


Book Description

This handbook is an excellent reference for materials scientists and engineers needing to gain more knowledge about these engineering materials. Following introductory chapters on the fundamental materials properties of titanium, readers will find comprehensive descriptions of the development, processing and properties of modern titanium alloys. There then follows detailed discussion of the applications of titanium and its alloys in aerospace, medicine, energy and automotive technology.




Physical Chemistry of Metallurgical Processes, Second Edition


Book Description

This updated, second edition retains its classroom-tested treatment of physical chemistry of metallurgical topics, such as roasting of sulfide minerals, matte smelting, converting, structure, properties and theories of slag, reduction of oxides and reduction smelting, interfacial phenomena, steelmaking, secondary steelmaking, role of halides in extraction of metals, refining, hydrometallurgy and electrometallurgy, and adds new data in worked-out examples as well as up-to-date references to the literature. The book further explains the physical chemistry of various metallurgical topics, steps involved in extraction of metals, such as roasting, matte smelting/converting, reduction smelting, steelmaking reactions, deoxidation, stainless steelmaking, vacuum degassing, refining, leaching, chemical precipitation, ion exchange, solvent extraction, cementation, gaseous reduction and electrowinning. Each topic is illustrated with appropriate examples of applications of the technique in extraction of some common, reactive, rare, or refractory metal together with worked out problems explaining the principle of the operation. The problems require imagination and critical analyses and also encourage readers for creative application of thermodynamic data in metal extraction. Updates and condenses text throughout the book by sequential arrangement of paragraphs in different chapters; Maximizes readers’ understanding of the physicochemical principles involved in extraction/production of common and rare/reactive metals by pyro- as well as hydrometallurgical routes; Reinforces concepts presented with worked examples in each chapter explaining the process steps; Explains the physical chemistry of various metallurgical steps, such as roasting, matte smelting/converting, and reduction smelting, steelmaking, aqueous processing etc. in extraction of metals; Collects and uniformly presents scattered information on physicochemical principles of metal production from various books and journals.




Additive Manufacturing of Titanium Alloys


Book Description

Additive Manufacturing of Titanium Alloys: State of the Art, Challenges and Opportunities provides alternative methods to the conventional approach for the fabrication of the majority of titanium components produced via the cast and wrought technique, a process which involves a considerable amount of expensive machining. In contrast, the Additive Manufacturing (AM) approach allows very close to final part configuration to be directly fabricated minimizing machining cost, while achieving mechanical properties at least at cast and wrought levels. In addition, the book offers the benefit of significant savings through better material utilization for parts with high buy-to-fly ratios (ratio of initial stock mass to final part mass before and after manufacturing). As titanium additive manufacturing has attracted considerable attention from both academicians and technologists, and has already led to many applications in aerospace and terrestrial systems, as well as in the medical industry, this book explores the unique shape making capabilities and attractive mechanical properties which make titanium an ideal material for the additive manufacturing industry. - Includes coverage of the fundamentals of microstructural evolution in titanium alloys - Introduces readers to the various Additive Manufacturing Technologies, such as Powder Bed Fusion (PBF) and Directed Energy Deposition (DED) - Looks at the future of Titanium Additive Manufacturing - Provides a complete review of the science, technology, and applications of Titanium Additive Manufacturing (AM)




Titanium: Physical Metallurgy, Processing, and Applications


Book Description

This new book covers all aspects of the history, physical metallurgy, corrosion behavior, cost factors and current and potential uses of titanium. The history of titanium is traced from its early beginnings through the work of Kroll, to the present day broadening market place. Extensive detail on extraction processes is discussed, as well as the various beta to alpha transformations and details of the powder metallurgy techniques.




Handbook of Non-Ferrous Metal Powders


Book Description

The manufacture and use of the powders of non-ferrous metals has been taking place for many years in what was previously Soviet Russia, and a huge amount of knowledge and experience has built up in that country over the last forty years or so. Although accounts of the topic have been published in the Russian language, no English language account has existed until now.Six prominent academics and industrialists from the Ukraine and Russia have produced this highly-detailed account which covers the classification, manufacturing methods, treatment and properties of the non-ferrous metals ( aluminium, titanium, magnesium, copper, nickel, cobalt, zinc, cadmium, lead, tin, bismuth, noble metals and earth metals).The result is a formidable reference source for those in all aspects of the metal powder industry. - Covers the manufacturing methods, properties and importance of the following metals: aluminium, titanium, magnesium, copper, nickel, cobalt, zinc, cadmium, noble metals, rare earth metals, lead, tin and bismuth - Expert Russian team of authors, all very experienced - English translation and update of book previously published in Russian