Chitosan-Based Hydrogels


Book Description

Due to their unique properties, chitosan-based materials have emerged as useful resources in a variety of medicines, drug controlled-release carriers, tissue engineering scaffolds, and immobilized enzymes. But many of these materials have yet to reach the commercial market. Therefore, more work must be completed to fill the gap between research and




Chitosan-Based Hydrogels


Book Description

Due to their unique properties, chitosan-based materials have emerged as useful resources in a variety of medicines, drug controlled-release carriers, tissue engineering scaffolds, and immobilized enzymes. But many of these materials have yet to reach the commercial market. Therefore, more work must be completed to fill the gap between research and production. Exploring the state of the field, Chitosan-Based Hydrogels: Functions and Applications details the latest progress in the research and development of chitosan-based biomaterials. The book introduces the formation and chemical structure of chitosan-based hydrogels. It also discusses the relationship between their structure and functions, which provides a theoretical basis for the design of biomaterials. In addition, many real-world examples illustrate the potential application of chitosan-based hydrogels in various areas, including materials science, biotechnology, pharmaceuticals, regenerative medicine, and cell engineering. By examining the structure and functions of chitosan-based hydrogels in living systems, this book provides the foundation for future research. It encourages readers to contribute to further research and development of these unique biomaterials.




Chitosan-Based Hydrogels


Book Description

Due to their unique properties, chitosan-based materials have emerged as useful resources in a variety of medicines, drug controlled-release carriers, tissue engineering scaffolds, and immobilized enzymes. But many of these materials have yet to reach the commercial market. Therefore, more work must be completed to fill the gap between research and production. Exploring the state of the field, Chitosan-Based Hydrogels: Functions and Applications details the latest progress in the research and development of chitosan-based biomaterials. The book introduces the formation and chemical structure of chitosan-based hydrogels. It also discusses the relationship between their structure and functions, which provides a theoretical basis for the design of biomaterials. In addition, many real-world examples illustrate the potential application of chitosan-based hydrogels in various areas, including materials science, biotechnology, pharmaceuticals, regenerative medicine, and cell engineering. By examining the structure and functions of chitosan-based hydrogels in living systems, this book provides the foundation for future research. It encourages readers to contribute to further research and development of these unique biomaterials.




Functional Chitosan


Book Description

Thanks to their unique properties, chitosan and chitosan-based materials have numerous applications in the field of biomedicine, especially in drug delivery. This book examines biomedical applications of functional chitosan, exploring the various functions and applications in the development of chitosan-based biomaterials. It also describes the chemical structure of chitosan and discusses the relationship between their structure and functions, providing a theoretical basis for the design of biomaterials. Lastly, it reviews chemically modified and composite materials of chitin and chitosan derivatives for biomedical applications, such as tissue engineering, nanomedicine, drug delivery, and gene delivery.




Chitosan Based Biomaterials Volume 1


Book Description

Chitosan Based Biomaterials: Fundamentals, Volume 1, provides the latest information on chitosan, a natural polymer derived from the marine material chitin. Chitosan displays unique properties, most notably biocompatibility and biodegradability. It can also be easily tuned to modify its structure or properties, making chitosan an excellent candidate as a biomaterial. Consequently, chitosan is being developed for many biomedical functions, ranging from tissue engineering and implant coatings to drug and gene delivery. This book looks at the fundamentals of chitosan-based biomaterials. Contains specific focus on the techniques and technologies needed to develop chitosan for biomedical applications Presents a comprehensive treatment of the fundamentals Provides contributions from leading researchers with extensive experience in chitosan




Hydrogels


Book Description

Hydrogels, as three-dimensional polymer networks, are able to retain a large amount of water in their swollen state. The biomedical application of hydrogels was initially hampered by the toxicity of cross-linking agents and the limitations of hydrogel formation under physiological conditions. However, emerging knowledge in polymer chemistry and an increased understanding of biological processes have resulted in the design of versatile materials and minimally invasive therapies.The novel but challenging properties of hydrogels are attracting the attention of researchers in the biological, medical, and pharmaceutical fields. In the last few years, new methods have been developed for the preparation of hydrophilic polymers and hydrogels, which may be used in future biomedical and drug delivery applications. Such efforts include the synthesis of self-organized nanostructures based on triblock copolymers with applications in controlled drug delivery. These hydrogels could be used as carriers for drug delivery when combined with the techniques of drug imprinting and subsequent release. Engineered protein hydrogels have many potential advantages. They are excellent biomaterials and biodegradables. Furthermore, they could encapsulate drugs and be used in injectable forms to replace surgery, to repair damaged cartilage, in regenerative medicine, or in tissue engineering. Also, they have potential applications in gene therapy, although this field is relatively new.




Cellulose-Based Superabsorbent Hydrogels


Book Description

With the prospect of revolutionizing specific technologies, this book highlights the most exciting and impactful current research in the fields of cellulose-based superabsorbent hydrogels with their smart applications. The book assembles the newest synthetic routes, characterization methods, and applications in the emergent area. Leading experts in the field have contributed chapters representative of their most recent research results, shedding light on the enormous potential of this field and thoroughly presenting cellulose-based hydrogel functioning materials. The book is intended for the polymer chemists, academic and industrial scientists and engineers, pharmaceutical and biomedical scientists and agricultural engineers engaged in research and development on absorbency, absorbent products and superabsorbent hydrogels. It can also be supportive for undergraduate and graduate students.




Chitin and Chitosan


Book Description

Offers a comprehensive guide to the isolation, properties and applications of chitin and chitosan Chitin and Chitosan: Properties and Applications presents a comprehensive review of the isolation, properties and applications of chitin and chitosan. These promising biomaterials have the potential to be broadly applied and there is a growing market for these biopolymers in areas such as medical and pharmaceutical, packaging, agricultural, textile, cosmetics, nanoparticles and more. The authors – noted experts in the field – explore the isolation, characterization and the physical and chemical properties of chitin and chitosan. They also examine their properties such as hydrogels, immunomodulation and biotechnology, antimicrobial activity and chemical enzymatic modifications. The book offers an analysis of the myriad medical and pharmaceutical applications as well as a review of applications in other areas. In addition, the authors discuss regulations, markets and perspectives for the use of chitin and chitosan. This important book: Offers a thorough review of the isolation, properties and applications of chitin and chitosan. Contains information on the wide-ranging applications and growing market demand for chitin and chitosan Includes a discussion of current regulations and the outlook for the future Written for Researchers in academia and industry who are working in the fields of chitin and chitosan, Chitin and Chitosan: Properties and Applications offers a review of these promising biomaterials that have great potential due to their material properties and biological functionalities.




Chitosan


Book Description

Unique book presenting the latest advancements and applications of chitosan-based hydrogels and composite materials in biotechnology, environmental studies, food, medicine, water treatments, drug delivery. This book delves deeply in to the preparation, characterization and multiple applications of chitin and chitosan. The 17 chapters written by leading experts is an excellent reference source and state-of-the-art review for researchers and scientists using chitosan or biopolymers in their respective areas. This book is divided into following sections: Production and derivatives of chitosan Chitosan in the textile and food industries Chitosan in biomedical applications Chitosan in agriculture and water treatment The book is practical and readers will be able to see descriptions of chitosan production methods as well as techniques that can be used to estimate and modify their physical and chemical properties. It provides a full description not only of the traditional and recent developments in the applications of chitosan in the fields of biotechnology, environmental studies, food, medicine, water treatments, drug delivery, but it includes all of the therapeutic usages as well.




Chitin-Chitosan


Book Description

Chitin is the second most abundant biopolymer after cellulose and is a resourceful copious and cheap biomaterial discovered in 1859 owing to significant industrial and technological utility. Raw chitin-chitosan resembles keratin in its biological functions. Chitin chemistry vastly developed via innate unparalleled biological features and exceptional physicochemical characters. Chitosan endures assorted chemical/physical modifications easily at free proactive functionalities, yet intact bulk properties are achieved through processing, viz., film, membrane, composite, hybrid, nanofibre, nanoparticle, hydrogel and scaffolds. Rapidly lessen bioresources signify chitosan as an option due to renewable eco-friendliness and drive embryonic myriad applications in S