Chitosan-Based Systems for Biopharmaceuticals


Book Description

Chitosan is a linear polysaccharide commercially produced by the deacetylation of chitin. It is non-toxic, biodegradable, biocompatible, and acts as a bioadhesive with otherwise unstable biomolecules - making it a valuable component in the formulation of biopharmaceutical drugs. Chitosan-Based Systems for Biopharmaceuticals provides an extensive overview of the application of chitosan and its derivatives in the development and optimisation of biopharmaceuticals. The book is divided in four different parts. Part I discusses general aspects of chitosan and its derivatives, with particular emphasis on issues related to the development of biopharmaceutical chitosan-based systems. Part II deals with the use of chitosan and derivatives in the formulation and delivery of biopharmaceuticals, and focuses on the synergistic effects between chitosan and this particular subset of pharmaceuticals. Part III discusses specific applications of chitosan and its derivatives for biopharmaceutical use. Finally, Part IV presents diverse viewpoints on different issues such as regulatory, manufacturing and toxicological requirements of chitosan and its derivatives related to the development of biopharmaceutical products, as well as their patent status, and clinical application and potential. Topics covered include: chemical and technological advances in chitins and chitosans useful for the formulation of biopharmaceuticals physical properties of chitosan and derivatives in sol and gel states absorption promotion properties of chitosan and derivatives biocompatibility and biodegradation of chitosan and derivatives biological and pharmacological activity of chitosan and derivatives biological, chemical and physical compatibility of chitosan and biopharmaceuticals approaches for functional modification or crosslinking of chitosan use of chitosan and derivatives in conventional biopharmaceutical dosage forms manufacture techniques of chitosan-based microparticles and nanoparticles for biopharmaceuticals chitosan and derivatives for biopharmaceutical use: mucoadhesive properties chitosan-based systems for mucosal delivery of biopharmaceuticals chitosan-based delivery systems for mucosal vaccination chitosan-based nanoparticulates for oral delivery of biopharmaceuticals chitosan-based systems for ocular delivery of biopharmaceuticals chemical modification of chitosan for delivery of DNA and siRNA target-specific chitosan-based nanoparticle systems for nucleic acid delivery functional PEGylated chitosan systems for biopharmaceuticals stimuli-sensitive chitosan-based systems for biopharmaceuticals chitosan copolymers for biopharmaceuticals application of chitosan for anti-cancer biopharmaceutical delivery chitosan-based biopharmaceuticals scaffolds in tissue engineering and regenerative medicine wound healing properties of chitosan and its use in wound dressing biopharmaceuticals toxicological properties of chitosan and derivatives for biopharmaceutical applications regulatory status of chitosan and derivatives patentability and intellectual property issues quality control and good manufacturing practice preclinical and clinical use of chitosan and derivatives for biopharmaceuticals Chitosan-Based Systems for Biopharmaceuticals is an important compendium of fundamental concepts, practical tools and applications of chitosan-based biopharmaceuticals for researchers in academia and industry working in drug formulation and delivery, biopharmaceuticals, medicinal chemistry, pharmacy, bioengineering and new materials development.




Functional Chitosan


Book Description

Thanks to their unique properties, chitosan and chitosan-based materials have numerous applications in the field of biomedicine, especially in drug delivery. This book examines biomedical applications of functional chitosan, exploring the various functions and applications in the development of chitosan-based biomaterials. It also describes the chemical structure of chitosan and discusses the relationship between their structure and functions, providing a theoretical basis for the design of biomaterials. Lastly, it reviews chemically modified and composite materials of chitin and chitosan derivatives for biomedical applications, such as tissue engineering, nanomedicine, drug delivery, and gene delivery.




Chitosan Based Biomaterials Volume 1


Book Description

Chitosan Based Biomaterials: Fundamentals, Volume 1, provides the latest information on chitosan, a natural polymer derived from the marine material chitin. Chitosan displays unique properties, most notably biocompatibility and biodegradability. It can also be easily tuned to modify its structure or properties, making chitosan an excellent candidate as a biomaterial. Consequently, chitosan is being developed for many biomedical functions, ranging from tissue engineering and implant coatings to drug and gene delivery. This book looks at the fundamentals of chitosan-based biomaterials. - Contains specific focus on the techniques and technologies needed to develop chitosan for biomedical applications - Presents a comprehensive treatment of the fundamentals - Provides contributions from leading researchers with extensive experience in chitosan




Chitosan Based Materials and its Applications


Book Description

This volume presents 10 reviews contributed by eminent researchers around the world on chitosan based materials. The introductory chapters present information on general characteristics of chitosan and various types of materials which are based on it such as nanofibers, nanoparticles, nanocapsules and other chemically modified chitosans. This is followed by an explanation of chitosan characterization and extraction techniques. Concluding chapters describe the applications of chitosan products in water treatment, drug delivery, edible films and pervaporation membranes. Readers will therefore gain an understanding about chitosan and materials derived from this polymer and their practical applications. The volume serves as a simple reference for chemical engineering students and professionals interested in the basic and applied chemistry of chitosan and chitosan-derived products.




Chitin and Chitosan


Book Description

Chitin and Chitosan - Physicochemical Properties and Industrial Applications provides an overview of the extraction, modification, characterization, and application of chitin and chitosan derivatives from crustacean byproducts and their physicochemical properties. It presents and explains important studies and develops new and innovative methods of biological and physicochemical analysis in the fields of organic and mineral environmental pollution, corrosion inhibitors, drug delivery systems, superabsorbent materials, nanotechnology, textiles, biotechnology, and biomedical sciences.




Chitosan-Based Nanoparticles for Biomedical Applications


Book Description

Chitosan-Based Nanoparticles for Biomedical Applications explores the use of chitosan-based nanoparticles as a sustainable solution for the development of improved therapeutic and diagnostic techniques. A range of biomedical applications is reviewed, including treatment against highly resistant bacteria and parasites; tissue regeneration; drug delivery, and more. Moreover, the application of chitosan-based nanoparticles for the effective delivery of hormones, vaccines, phytochemicals, nutraceuticals, and their application in immobilization of enzymes is also discussed in detail. This book provides a state-of-the-art overview for materials scientists, pharmaceutical scientists, and researchers with an interest in the development of novel materials for therapeutics. - Provides a comprehensive overview of chitosan-based nanoparticles, from extraction, synthesis and characterization to biomedical applications, clinical trials and toxicological considerations - Covers a range of biomedical applications, including nutraceuticals, wound healing, antimicrobial treatment, cancer therapeutics, and more - Utilizes an interdisciplinary approach, combining materials science, biochemistry, and bioscience inputs to appeal to a broad audience




Mucosal Delivery of Biopharmaceuticals


Book Description

Biopharmaceutical medicines, the newest class of therapeutics, are quite heterogeneous and include a range of molecules such as proteins, peptides, vaccines and nucleic acids, with use in virtually all therapeutic fields (e.g. cancer and infectious diseases, vaccination, metabolic dysfunctions) and diagnostics. This edited book gives a concise and up-to-date overview of the biological features justifying the use of different human mucosa as delivery routes for biopharmaceuticals, the technological strategies that have been followed so far regarding the optimization of mucosal potentialities as well as the challenges that arise with the advent of new biopharmaceutical drugs and alternative means of administration. Following a brief introduction, the first section addresses general aspects of the biology of mucosal tissues and their unique aspects toward beneficial or deleterious interaction with biopharmaceuticals and their delivery systems. The second part reviews the different delivery strategies that have recently been investigated for different mucosal sites. The third section describes the development and clinical applications of drug delivery systems and products enclosing biopharmaceuticals for mucosal delivery, with a focus on the most successful case studies of recent years. The last section briefly centers on relevant aspects of the regulatory, toxicological and market issues of mucosal delivery of biopharmaceuticals.​ Scientists and researchers in the fields of drug delivery, material science, biomedical science and bioengineering as well as professionals, regulators and policy makers in the pharmaceutical, biotechnology and healthcare industries will find in this book an important compendium of fundamental concepts and practical tools for their daily research and activities.




Handbook of Polymers for Pharmaceutical Technologies, Structure and Chemistry


Book Description

Polymers are one of the most fascinating materials of the present era finding their applications in almost every aspects of life. Polymers are either directly available in nature or are chemically synthesized and used depending upon the targeted applications.Advances in polymer science and the introduction of new polymers have resulted in the significant development of polymers with unique properties. Different kinds of polymers have been and will be one of the key in several applications in many of the advanced pharmaceutical research being carried out over the globe. This 4-partset of books contains precisely referenced chapters, emphasizing different kinds of polymers with basic fundamentals and practicality for application in diverse pharmaceutical technologies. The volumes aim at explaining basics of polymers based materials from different resources and their chemistry along with practical applications which present a future direction in the pharmaceutical industry. Each volume offer deep insight into the subject being treated. Volume 1: Structure and Chemistry Volume 2: Processing and Applications Volume 3: Biodegradable Polymers Volume 4: Bioactive and Compatible Synthetic/Hybrid Polymers




Advanced Biomaterials and Biodevices


Book Description

This cutting-edge book focuses on the emerging area of biomaterials and biodevices that incorporate therapeutic agents, molecular targeting, and diagnostic imaging capabilities The design and development of biomaterials play a significant role in the diagnosis, treatment, and prevention of diseases. When used with highly selective and sensitive biomaterials, cutting-edge biodevices can allow the rapid and accurate diagnosis of disease, creating a platform for research and development, especially in the field of treatment for prognosis and detection of diseases in the early stage. This book emphasizes the emerging area of biomaterials and biodevices that incorporate therapeutic agents, molecular targeting, and diagnostic imaging capabilities. The 15 comprehensive chapters written by leading experts cover such topics as: The use of severe plastic deformation technique to enhance the properties of nanostructured metals Descriptions of the different polymers for use in controlled drug release Chitin and chitosan as renewable healthcare biopolymers for biomedical applications Innovated devices such as “label-free biochips” and polymer MEMS Molecular imprinting and nanotechnology Prussian Blue biosensing applications The evaluation of different types of biosensors in terms of their cost effectiveness, selectivity, and sensitivity Stimuli-responsive polypeptide nanocarriers for malignancy therapeutics




Interpenetrating Polymer Network: Biomedical Applications


Book Description

The book focuses on novel interpenetrating polymer network (IPN)/semi-IPN technologies for drug delivery and biomedical applications. The dynamism of the design and development of interpenetrating network polymers is based on their ability to provide free volume for the easy encapsulation of drugs in the three-dimensional network structure obtained by cross-linking two or more polymer networks. Natural polymer-based IPNs can deliver drugs at a controlled rate over an extended period of time, while novel IPNs ensure better mechanical strength and sustained/ controlled drug-delivery properties. This book presents an overview of the use of this technology to fabricate nanomedicine, hydrogels, nanoparticles, and microparticles, thereby unlocking IPN’s potential in the area of drug delivery and biomedical engineering. It also discusses applications of IPN systems in cancer therapy and tissue engineering, and describes the various IPN systems and their wide usage and applications in drug delivery.