Circuit Simulation


Book Description

A DEFINITIVE TEXT ON DEVELOPING CIRCUIT SIMULATORS Circuit Simulation gives a clear description of the numerical techniques and algorithms that are part of modern circuit simulators, with a focus on the most commonly used simulation modes: DC analysis and transient analysis. Tested in a graduate course on circuit simulation at the University of Toronto, this unique text provides the reader with sufficient detail and mathematical rigor to write his/her own basic circuit simulator. There is detailed coverage throughout of the mathematical and numerical techniques that are the basis for the various simulation topics, which facilitates a complete understanding of practical simulation techniques. In addition, Circuit Simulation: Explores a number of modern techniques from numerical analysis that are not synthesized anywhere else Covers network equation formulation in detail, with an emphasis on modified nodal analysis Gives a comprehensive treatment of the most relevant aspects of linear and nonlinear system solution techniques States all theorems without proof in order to maintain the focus on the end-goal of providing coverage of practical simulation methods Provides ample references for further study Enables newcomers to circuit simulation to understand the material in a concrete and holistic manner With problem sets and computer projects at the end of every chapter, Circuit Simulation is ideally suited for a graduate course on this topic. It is also a practical reference for design engineers and computer-aided design practitioners, as well as researchers and developers in both industry and academia.




Mosfet Modeling For Circuit Analysis And Design


Book Description

This is the first book dedicated to the next generation of MOSFET models. Addressed to circuit designers with an in-depth treatment that appeals to device specialists, the book presents a fresh view of compact modeling, having completely abandoned the regional modeling approach.Both an overview of the basic physics theory required to build compact MOSFET models and a unified treatment of inversion-charge and surface-potential models are provided. The needs of digital, analog and RF designers as regards the availability of simple equations for circuit designs are taken into account. Compact expressions for hand analysis or for automatic synthesis, valid in all operating regions, are presented throughout the book. All the main expressions for computer simulation used in the new generation compact models are derived.Since designers in advanced technologies are increasingly concerned with fluctuations, the modeling of fluctuations is strongly emphasized. A unified approach for both space (matching) and time (noise) fluctuations is introduced.




Circuit Design with VHDL, third edition


Book Description

A completely updated and expanded comprehensive treatment of VHDL and its applications to the design and simulation of real, industry-standard circuits. This comprehensive treatment of VHDL and its applications to the design and simulation of real, industry-standard circuits has been completely updated and expanded for the third edition. New features include all VHDL-2008 constructs, an extensive review of digital circuits, RTL analysis, and an unequaled collection of VHDL examples and exercises. The book focuses on the use of VHDL rather than solely on the language, with an emphasis on design examples and laboratory exercises. The third edition begins with a detailed review of digital circuits (combinatorial, sequential, state machines, and FPGAs), thus providing a self-contained single reference for the teaching of digital circuit design with VHDL. In its coverage of VHDL-2008, it makes a clear distinction between VHDL for synthesis and VHDL for simulation. The text offers complete VHDL codes in examples as well as simulation results and comments. The significantly expanded examples and exercises include many not previously published, with multiple physical demonstrations meant to inspire and motivate students. The book is suitable for undergraduate and graduate students in VHDL and digital circuit design, and can be used as a professional reference for VHDL practitioners. It can also serve as a text for digital VLSI in-house or academic courses.




Electronic Circuits


Book Description

A text for a two-semester electronics sequence for majors in electrical engineering, serving the special needs of computer engineers by allowing readers to advance to digital topics and skip linear applications. Assumes prior knowledge of circuit theory, Laplace transforms and transfer functions, and ideal logic gates. Covers instrumentation-oriented topics, emphasizing operational amplifiers, and integrates SPICE modeling throughout the text. Includes summaries, problems, and b&w illustrations. Annotation c. Book News, Inc., Portland, OR (booknews.com).




Computer Methods for Circuit Analysis and Design


Book Description

This text is about methods used for the computer simulation of analog systems. It concentrates on electronic applications, but many of the methods are applicable to other engineering problems as well. This revised edition (1st, 1983) encompasses recent theoretical developments and program-writing tips for computer-aided design. About 60% of the text is suitable for a senior-level course in circuit theory. The whole text is suitable for graduate courses or as a reference for scientists and engineers who seek information in the field. Annotation copyright by Book News, Inc., Portland, OR




Advanced Circuit Simulation Using Multisim Workbench


Book Description

Covers advanced analyses and the creation of models and subcircuits. This book also includes coverage of transmission lines, the special elements which are used to connect components in PCBs and integrated circuits. Finally, it includes a description of Ultiboard, the tool for PCB creation from a circuit description in Multisim.




VLSI Circuit Simulation and Optimization


Book Description

Circuit simulation has become an essential tool in circuit design and without it's aid, analogue and mixed-signal IC design would be impossible. However the applicability and limitations of circuit simulators have not been generally well understood and this book now provides a clear and easy to follow explanation of their function. The material covered includes the algorithms used in circuit simulation and the numerical techniques needed for linear and non-linear DC analysis, transient analysis and AC analysis. The book goes on to explain the numeric methods to include sensitivity and tolerance analysis and optimisation of component values for circuit design. The final part deals with logic simulation and mixed-signal simulation algorithms. There are comprehensive and detailed descriptions of the numerical methods and the material is presented in a way that provides for the needs of both experienced engineers who wish to extend their knowledge of current tools and techniques, and of advanced students and researchers who wish to develop new simulators.




Computational Electronic Circuits


Book Description

This textbook teaches in one, coherent presentation the three distinct topics of analysis of electronic circuits, mathematical numerical algorithms and coding in a software such as MATLAB®. By combining the capabilities of circuit simulators and mathematical software, the author teaches key concepts of circuit analysis and algorithms, using a modern approach. The DC, Transient, AC, Noise and behavioral analyses are implemented in MATLAB to study the complete characteristics of a variety of electronic circuits, such as amplifiers, rectifiers, hysteresis circuits, harmonic traps and passes, polyphaser filters, directional couplers, electro-static discharge and piezoelectric crystals. This book teaches basic and advanced circuit analysis, by incorporating algorithms and simulations that teach readers how to develop their own simulators and fully characterize and design electronic circuits. Teaches students and practitioners DC, AC, Transient, Noise and Behavioral analyses using MATLAB; Shows readers how to create their own complete simulator in MATLAB by adding materials learned in all 6 chapters of the book; Balances theory, math and analysis; Introduces many examples such as noise minimization, parameter optimization, power splitters, harmonic traps and passes, directional couplers, polyphase filters and electro-static discharge that are hardly referenced in other textbooks; Teaches how to create the fundamental analysis functions such as linear and nonlinear equation solvers, determinant calculation, random number generation and Fast Fourier transformation rather than using the built-in native MATLAB codes.




Multiphysics Simulation by Design for Electrical Machines, Power Electronics and Drives


Book Description

Presents applied theory and advanced simulation techniques for electric machines and drives This book combines the knowledge of experts from both academia and the software industry to present theories of multiphysics simulation by design for electrical machines, power electronics, and drives. The comprehensive design approach described within supports new applications required by technologies sustaining high drive efficiency. The highlighted framework considers the electric machine at the heart of the entire electric drive. The book also emphasizes the simulation by design concept—a concept that frames the entire highlighted design methodology, which is described and illustrated by various advanced simulation technologies. Multiphysics Simulation by Design for Electrical Machines, Power Electronics and Drives begins with the basics of electrical machine design and manufacturing tolerances. It also discusses fundamental aspects of the state of the art design process and includes examples from industrial practice. It explains FEM-based analysis techniques for electrical machine design—providing details on how it can be employed in ANSYS Maxwell software. In addition, the book covers advanced magnetic material modeling capabilities employed in numerical computation; thermal analysis; automated optimization for electric machines; and power electronics and drive systems. This valuable resource: Delivers the multi-physics know-how based on practical electric machine design methodologies Provides an extensive overview of electric machine design optimization and its integration with power electronics and drives Incorporates case studies from industrial practice and research and development projects Multiphysics Simulation by Design for Electrical Machines, Power Electronics and Drives is an incredibly helpful book for design engineers, application and system engineers, and technical professionals. It will also benefit graduate engineering students with a strong interest in electric machines and drives.




Nonlinear Circuit Simulation and Modeling


Book Description

A practical, tutorial guide to the nonlinear methods and techniques needed to design real-world microwave circuits.