Essentials of Civil Engineering Materials


Book Description

Essentials of Civil Engineering Materials provides students with a foundational guide to the types of materials used in civil engineering, as well as how these materials behave under the conditions for which they were designed and a basic understanding of the science of the materials. This critical knowledge prepares students to carefully consider and confidently select the best materials for the design, construction, and maintenance of future projects. The text begins by introducing the basic requirements of engineering materials, material properties and standards, experimental design, economic factors, and the issue of sustainability. Additional chapters explore the mechanical principles of materials, composite models and viscoelasticity, and material chemistry. Students read about various types of materials, including metals, steel, aggregates and cementitious materials, and wood. The book concludes with a chapter dedicated to the topic of sustainability. Each chapter includes closing remarks to summarize the key concepts of the chapter and problems to help students retain important learnings. Essentials of Civil Engineering Materials is an ideal resource for introductory courses in civil engineering.







New Materials in Civil Engineering


Book Description

New Materials in Civil Engineering provides engineers and scientists with the tools and methods needed to meet the challenge of designing and constructing more resilient and sustainable infrastructures. This book is a valuable guide to the properties, selection criteria, products, applications, lifecycle and recyclability of advanced materials. It presents an A-to-Z approach to all types of materials, highlighting their key performance properties, principal characteristics and applications. Traditional materials covered include concrete, soil, steel, timber, fly ash, geosynthetic, fiber-reinforced concrete, smart materials, carbon fiber and reinforced polymers. In addition, the book covers nanotechnology and biotechnology in the development of new materials. - Covers a variety of materials, including fly ash, geosynthetic, fiber-reinforced concrete, smart materials, carbon fiber reinforced polymer and waste materials - Provides a "one-stop resource of information for the latest materials and practical applications - Includes a variety of different use case studies




Materials for Civil Engineering: Properties and Applications in Infrastructure


Book Description

Publisher's Note: Products purchased from Third Party sellers are not guaranteed by the publisher for quality, authenticity, or access to any online entitlements included with the product. Analyze material properties and select optimal materials for civil engineering projects This hands-on textbook offers complete coverage of the construction materials that civil engineers use in the field. You will learn how to analyze material properties and select appropriate materials for civil engineering projects of all types and sizes. Materials for Civil Engineering: Properties and Applications in Infrastructure lays out key characteristics, manufacturing processes, and sustainability issues. Data analysis of materials is emphasized throughout, with references to ASTM standards for material testing. Coverage includes: • Selection of materials • Aggregates • Concrete • Steel • Asphalt • Timber • Masonry • FRP composites




College of Engineering


Book Description







Computational Materials Engineering


Book Description

Computational Materials Engineering is an advanced introduction to the computer-aided modeling of essential material properties and behavior, including the physical, thermal and chemical parameters, as well as the mathematical tools used to perform simulations. Its emphasis will be on crystalline materials, which includes all metals. The basis of Computational Materials Engineering allows scientists and engineers to create virtual simulations of material behavior and properties, to better understand how a particular material works and performs and then use that knowledge to design improvements for particular material applications. The text displays knowledge of software designers, materials scientists and engineers, and those involved in materials applications like mechanical engineers, civil engineers, electrical engineers, and chemical engineers. Readers from students to practicing engineers to materials research scientists will find in this book a single source of the major elements that make up contemporary computer modeling of materials characteristics and behavior. The reader will gain an understanding of the underlying statistical and analytical tools that are the basis for modeling complex material interactions, including an understanding of computational thermodynamics and molecular kinetics; as well as various modeling systems. Finally, the book will offer the reader a variety of algorithms to use in solving typical modeling problems so that the theory presented herein can be put to real-world use. - Balanced coverage of fundamentals of materials modeling, as well as more advanced aspects of modeling, such as modeling at all scales from the atomic to the molecular to the macro-material - Concise, yet rigorous mathematical coverage of such analytical tools as the Potts type Monte Carlo method, cellular automata, phase field, dislocation dynamics and Finite Element Analysis in statistical and analytical modeling




Civil Engineering - Volume I


Book Description

Civil Engineering is the component of Encyclopedia of Physical Sciences, Engineering and Technology Resources in the global Encyclopedia of Life Support Systems (EOLSS), which is an integrated compendium of twenty one Encyclopedias. Civil Engineering is the oldest of the engineering specialties and has contributed very much to develop our society throughout the long history of human life. The advancement of civil engineering has, therefore, been closely related to that of civilization. In this theme, human activities on the earth from ancient times to the present are briefly reviewed first, and then the history of the process to establish the civil engineering discipline is discussed for better understanding of the important role that civil engineering has played in the growth of a mature society, from both technological and social points of view. Broad diversification of civil engineering has resulted from the enormous expansion of society during the latter half of the twentieth century. The various branches are briefly described to show the notable characters that civil engineering has formed to maintain the sustainable development of society. The Theme on Civil Engineering with contributions from distinguished experts in the field provides the essential aspects and fundamentals of civil engineering. The two volumes are aimed at the following five major target audiences: University and College Students Educators, Professional Practitioners, Research Personnel and Policy Analysts, Managers, and Decision Makers, NGOs and GOs.




Handbook of Research on Recent Developments in Materials Science and Corrosion Engineering Education


Book Description

The latest research innovations and enhanced technologies have altered the discipline of materials science and engineering. As a direct result of these developments, new trends in Materials Science and Engineering (MSE) pedagogy have emerged that require attention. The Handbook of Research on Recent Developments in Materials Science and Corrosion Engineering Education brings together innovative and current advances in the curriculum design and course content of MSE education programs. Focusing on the application of instructional strategies, pedagogical frameworks, and career preparation techniques, this book is an essential reference source for academicians, engineering practitioners, researchers, and industry professionals interested in emerging and future trends in MSE training and education.




Urban Engineering for Sustainability


Book Description

A textbook that introduces integrated, sustainable design of urban infrastructures, drawing on civil engineering, environmental engineering, urban planning, electrical engineering, mechanical engineering, and computer science. This textbook introduces urban infrastructure from an engineering perspective, with an emphasis on sustainability. Bringing together both fundamental principles and practical knowledge from civil engineering, environmental engineering, urban planning, electrical engineering, mechanical engineering, and computer science, the book transcends disciplinary boundaries by viewing urban infrastructures as integrated networks. The text devotes a chapter to each of five engineering systems—electricity, water, transportation, buildings, and solid waste—covering such topics as fundamentals, demand, management, technology, and analytical models. Other chapters present a formal definition of sustainability; discuss population forecasting techniques; offer a history of urban planning, from the Neolithic era to Kevin Lynch and Jane Jacobs; define and discuss urban metabolism and infrastructure integration, reviewing system interdependencies; and describe approaches to urban design that draw on complexity theory, algorithmic models, and machine learning. Throughout, a hypothetical city state, Civitas, is used to explain and illustrate the concepts covered. Each chapter includes working examples and problem sets. An appendix offers tables, diagrams, and conversion factors. The book can be used in advanced undergraduate and graduate courses in civil engineering and as a reference for practitioners. It can also be helpful in preparation for the Fundamentals of Engineering (FE) and Principles and Practice of Engineering (PE) exams.