Cogeneration and Polygeneration Systems


Book Description

Cogeneration and Polygeneration Systems explores the suite of state-of-the-art modeling, design, analysis and optimization procedures for creating and retooling optimally efficient combined heat and power (CHP) and polygeneration energy systems. The book adopts exergetic and thermoeconomic analysis and related modeling and simulation tools to inform performance and systems design in modern cogeneration plants. Chapters provide a methodical approach to the design, operation and troubleshooting of cogeneration systems when they are integrated with industrial processes. Cogeneration targets, environmental impacts, total site integration, and availability and reliability issues are addressed in-depth. Explores exergetic and exergoeconomic analysis for optimization purposes of CHP systems Addresses availability and reliability issues within cogeneration systems Reviews modern polygeneration systems based on renewable energy resources and fuel cells




Cogeneration and Polygeneration Systems


Book Description

Cogeneration and Polygeneration Systems explores the suite of state-of-the-art modeling, design, analysis and optimization procedures for creating and retooling optimally efficient combined heat and power (CHP) and polygeneration energy systems. The book adopts exergetic and thermoeconomic analysis and related modeling and simulation tools to inform performance and systems design in modern cogeneration plants. Chapters provide a methodical approach to the design, operation and troubleshooting of cogeneration systems when they are integrated with industrial processes. Cogeneration targets, environmental impacts, total site integration, and availability and reliability issues are addressed in-depth. - Explores exergetic and exergoeconomic analysis for optimization purposes of CHP systems - Addresses availability and reliability issues within cogeneration systems - Reviews modern polygeneration systems based on renewable energy resources and fuel cells




Polygeneration Systems


Book Description

The support for polygeneration lies in the possibility of integrating different technologies into a single energy system, to maximize the utilization of both fossil and renewable fuels. A system that delivers multiple forms of energy to users, maximizing the overall efficiency makes polygeneration an emerging and viable option for energy consuming industries. Polygeneration Systems: Design, Processes and Technologies provides simple and advanced calculation techniques to evaluate energy, environmental and economic performance of polygeneration systems under analysis. With specific design guidelines for each type of polygeneration system and experimental performance data, referred both to single components and overall systems, this title covers all aspects of polygeneration from design to operation, optimization and practical implementation. Giving different aspects of both fossil and non-fossil fuel based polygeneration and the wider area of polygeneration processes, this book helps readers learn general principles to specific system design and development through analysis of case studies, examples, simulation characteristics and thermodynamic and economic data. - Detailed economic data for technology to assist developing feasibility studies regarding the possible application of polygeneration technologies - Offers a comprehensive list of all current numerical and experimental results of polygeneration available - Includes simulation models, cost figures, demonstration projects and test standards for designers and researchers to validate their own models and/or to test the reliability of their results




Sustainable Energy Technology and Policies


Book Description

This book presents a state-of-the-art compilation focusing on both technological and policy aspects of sustainable energy production and consumption, which deals with issues like the need for and planning of smart cities, alternative transport fuel options, sustainable power production, pollution control technologies etc. The book comprises contributions from experts from all over the world, and addresses energy sustainability from different viewpoints. Specifically, the book focuses on energy sustainability in the Indian scenario with a background of the global perspective. Contributions from academia, policy makers and industry are included to address the challenge from different perspectives. The contents of this book will prove useful to researchers, professionals, and policy makers working in the area of green and sustainable energy.




Handbook of Clean Energy Systems, 6 Volume Set


Book Description

The Handbook of Clean Energy Systems brings together an international team of experts to present a comprehensive overview of the latest research, developments and practical applications throughout all areas of clean energy systems. Consolidating information which is currently scattered across a wide variety of literature sources, the handbook covers a broad range of topics in this interdisciplinary research field including both fossil and renewable energy systems. The development of intelligent energy systems for efficient energy processes and mitigation technologies for the reduction of environmental pollutants is explored in depth, and environmental, social and economic impacts are also addressed. Topics covered include: Volume 1 - Renewable Energy: Biomass resources and biofuel production; Bioenergy Utilization; Solar Energy; Wind Energy; Geothermal Energy; Tidal Energy. Volume 2 - Clean Energy Conversion Technologies: Steam/Vapor Power Generation; Gas Turbines Power Generation; Reciprocating Engines; Fuel Cells; Cogeneration and Polygeneration. Volume 3 - Mitigation Technologies: Carbon Capture; Negative Emissions System; Carbon Transportation; Carbon Storage; Emission Mitigation Technologies; Efficiency Improvements and Waste Management; Waste to Energy. Volume 4 - Intelligent Energy Systems: Future Electricity Markets; Diagnostic and Control of Energy Systems; New Electric Transmission Systems; Smart Grid and Modern Electrical Systems; Energy Efficiency of Municipal Energy Systems; Energy Efficiency of Industrial Energy Systems; Consumer Behaviors; Load Control and Management; Electric Car and Hybrid Car; Energy Efficiency Improvement. Volume 5 - Energy Storage: Thermal Energy Storage; Chemical Storage; Mechanical Storage; Electrochemical Storage; Integrated Storage Systems. Volume 6 - Sustainability of Energy Systems: Sustainability Indicators, Evaluation Criteria, and Reporting; Regulation and Policy; Finance and Investment; Emission Trading; Modeling and Analysis of Energy Systems; Energy vs. Development; Low Carbon Economy; Energy Efficiencies and Emission Reduction. Key features: Comprising over 3,500 pages in 6 volumes, HCES presents a comprehensive overview of the latest research, developments and practical applications throughout all areas of clean energy systems, consolidating a wealth of information which is currently scattered across a wide variety of literature sources. In addition to renewable energy systems, HCES also covers processes for the efficient and clean conversion of traditional fuels such as coal, oil and gas, energy storage systems, mitigation technologies for the reduction of environmental pollutants, and the development of intelligent energy systems. Environmental, social and economic impacts of energy systems are also addressed in depth. Published in full colour throughout. Fully indexed with cross referencing within and between all six volumes. Edited by leading researchers from academia and industry who are internationally renowned and active in their respective fields. Published in print and online. The online version is a single publication (i.e. no updates), available for one-time purchase or through annual subscription.




Polygeneration with Polystorage


Book Description

Polygeneration with Polystorage: For Energy and Chemicals addresses the problem of both traditional and dispersed generation with a broad, multidisciplinary perspective. As the first book to thoroughly focus on the topic of polygeneration, users will find the problem presented from different scientific and technical domains down to both macro and micro levels. Detailed analyses and state-of-the-art developments in specific fields are included, focusing on storage in conventional energy supply chains and demand-side renewable polygeneration systems, management advice and the necessary market mechanisms needed to support them. This reference is useful for academics and professionals in conventional and unconventional energy systems. - Includes an outlined framework towards polygeneration and polystorage down to both micro and macro levels - Contains fluid and continuous chapters that provide detailed analysis and a review of the state-of-the-art developments in specific fields - Addresses the wider global view of research advancement and potential in the role of polygeneration and polystorage in the move toward sustainability




Exergy


Book Description

Bridging the gap between concepts derived from Second Law of Thermodynamics and their application to Engineering practice, the property exergy and the exergy balance can be a tool for analyzing and improving the performance of energy conversion processes. With the exergy analysis it is possible to evaluate the performance of energy conversion processes not only on a thermodynamics basis but also by including production costs and environmental aspects and impacts of the studied processes. This comprehensive approach of the use of energy has, as one of the most important feature, the identification of sustainable ways of energy resources utilization. Based on the fundamentals of the exergy concept, its calculation, graphical representations and exergy balances evaluation, Exergy: Production Cost And Renewability describes the application of detailed exergy and thermoeconomic analysis to power plants and polygeneration systems, petroleum production and refining plants (including hydrogen production), chemical plants, biofuel production routes, combined production of ethanol and electricity, aircraft systems design, environmental impact mitigation processes and human body behavior. The presented case studies aim at providing students, researchers and engineers with guidelines to the utilization of the exergy and thermoeconomic analysis to model, simulate and optimize real processes and industrial plants.




Exergy Method


Book Description

The exergy method makes it possible to detect and quantify the possibilities of improving thermal and chemical processes and systems. The introduction of the concept thermo-ecological cost (cumulative consumption of non-renewable natural exergy resources) generated large application possibilities of exergy in ecology. This book contains a short presentation on the basic principles of exergy analysis and discusses new achievements in the field over the last 15 years. One of the most important issues considered by the distinguished author is the economy of non-renewable natural exergy. Previously discussed only in scientific journals, other important new problems highlighted include: calculation of the chemical exergy of all the stable chemical elements, global natural and anthropogenic exergy losses, practical guidelines for improvement of the thermodynamic imperfection of thermal processes and systems, development of the determination methods of partial exergy losses in thermal systems, evaluation of the natural mineral capital of the Earth, and the application of exergy for the determination of a pro-ecological tax.A basic knowledge of thermodynamics is assumed, and the book is therefore most appropriate for graduate students and engineers working in the field of energy and ecological management.




Mixed Integer Nonlinear Programming


Book Description

Many engineering, operations, and scientific applications include a mixture of discrete and continuous decision variables and nonlinear relationships involving the decision variables that have a pronounced effect on the set of feasible and optimal solutions. Mixed-integer nonlinear programming (MINLP) problems combine the numerical difficulties of handling nonlinear functions with the challenge of optimizing in the context of nonconvex functions and discrete variables. MINLP is one of the most flexible modeling paradigms available for optimization; but because its scope is so broad, in the most general cases it is hopelessly intractable. Nonetheless, an expanding body of researchers and practitioners — including chemical engineers, operations researchers, industrial engineers, mechanical engineers, economists, statisticians, computer scientists, operations managers, and mathematical programmers — are interested in solving large-scale MINLP instances.




Advances in Thermal Energy Storage Systems


Book Description

Thermal energy storage (TES) technologies store thermal energy (both heat and cold) for later use as required, rather than at the time of production. They are therefore important counterparts to various intermittent renewable energy generation methods and also provide a way of valorising waste process heat and reducing the energy demand of buildings. This book provides an authoritative overview of this key area. Part one reviews sensible heat storage technologies. Part two covers latent and thermochemical heat storage respectively. The final section addresses applications in heating and energy systems. - Reviews sensible heat storage technologies, including the use of water, molten salts, concrete and boreholes - Describes latent heat storage systems and thermochemical heat storage - Includes information on the monitoring and control of thermal energy storage systems, and considers their applications in residential buildings, power plants and industry




Recent Books