Combinatorial Mathematics X


Book Description




Combinatorial Mathematics


Book Description

This is the most readable and thorough graduate textbook and reference for combinatorics, covering enumeration, graphs, sets, and methods.







Introduction to Combinatorics


Book Description

What Is Combinatorics Anyway? Broadly speaking, combinatorics is the branch of mathematics dealing with different ways of selecting objects from a set or arranging objects. It tries to answer two major kinds of questions, namely, counting questions: how many ways can a selection or arrangement be chosen with a particular set of properties; and structural questions: does there exist a selection or arrangement of objects with a particular set of properties? The authors have presented a text for students at all levels of preparation. For some, this will be the first course where the students see several real proofs. Others will have a good background in linear algebra, will have completed the calculus stream, and will have started abstract algebra. The text starts by briefly discussing several examples of typical combinatorial problems to give the reader a better idea of what the subject covers. The next chapters explore enumerative ideas and also probability. It then moves on to enumerative functions and the relations between them, and generating functions and recurrences., Important families of functions, or numbers and then theorems are presented. Brief introductions to computer algebra and group theory come next. Structures of particular interest in combinatorics: posets, graphs, codes, Latin squares, and experimental designs follow. The authors conclude with further discussion of the interaction between linear algebra and combinatorics. Features Two new chapters on probability and posets. Numerous new illustrations, exercises, and problems. More examples on current technology use A thorough focus on accuracy Three appendices: sets, induction and proof techniques, vectors and matrices, and biographies with historical notes, Flexible use of MapleTM and MathematicaTM




Handbook of Discrete and Combinatorial Mathematics


Book Description

Handbook of Discrete and Combinatorial Mathematics provides a comprehensive reference volume for mathematicians, computer scientists, engineers, as well as students and reference librarians. The material is presented so that key information can be located and used quickly and easily. Each chapter includes a glossary. Individual topics are covered in sections and subsections within chapters, each of which is organized into clearly identifiable parts: definitions, facts, and examples. Examples are provided to illustrate some of the key definitions, facts, and algorithms. Some curious and entertaining facts and puzzles are also included. Readers will also find an extensive collection of biographies. This second edition is a major revision. It includes extensive additions and updates. Since the first edition appeared in 1999, many new discoveries have been made and new areas have grown in importance, which are covered in this edition.




Discrete and Combinatorial Mathematics


Book Description

This fifth edition continues to improve on the features that have made it the market leader. The text offers a flexible organization, enabling instructors to adapt the book to their particular courses. The book is both complete and careful, and it continues to maintain its emphasis on algorithms and applications. Excellent exercise sets allow students to perfect skills as they practice. This new edition continues to feature numerous computer science applications-making this the ideal text for preparing students for advanced study.




Combinatorics


Book Description

Combinatorics, Second Edition is a well-rounded, general introduction to the subjects of enumerative, bijective, and algebraic combinatorics. The textbook emphasizes bijective proofs, which provide elegant solutions to counting problems by setting up one-to-one correspondences between two sets of combinatorial objects. The author has written the textbook to be accessible to readers without any prior background in abstract algebra or combinatorics. Part I of the second edition develops an array of mathematical tools to solve counting problems: basic counting rules, recursions, inclusion-exclusion techniques, generating functions, bijective proofs, and linear algebraic methods. These tools are used to analyze combinatorial structures such as words, permutations, subsets, functions, graphs, trees, lattice paths, and much more. Part II cover topics in algebraic combinatorics including group actions, permutation statistics, symmetric functions, and tableau combinatorics. This edition provides greater coverage of the use of ordinary and exponential generating functions as a problem-solving tool. Along with two new chapters, several new sections, and improved exposition throughout, the textbook is brimming with many examples and exercises of various levels of difficulty.




Combinatorics


Book Description

This text provides a theoretical background for several topics in combinatorial mathematics, such as enumerative combinatorics (including partitions and Burnside's lemma), magic and Latin squares, graph theory, extremal combinatorics, mathematical games and elementary probability. A number of examples are given with explanations while the book also provides more than 300 exercises of different levels of difficulty that are arranged at the end of each chapter, and more than 130 additional challenging problems, including problems from mathematical olympiads. Solutions or hints to all exercises and problems are included. The book can be used by secondary school students preparing for mathematical competitions, by their instructors, and by undergraduate students. The book may also be useful for graduate students and for researchers that apply combinatorial methods in different areas.




Combinatorics for Computer Science


Book Description

Useful guide covers two major subdivisions of combinatorics — enumeration and graph theory — with emphasis on conceptual needs of computer science. Each part is divided into a "basic concepts" chapter emphasizing intuitive needs of the subject, followed by four "topics" chapters that explore these ideas in depth. Invaluable practical resource for graduate students, advanced undergraduates, and professionals with an interest in algorithm design and other aspects of computer science and combinatorics. References for Linear Order & for Graphs, Trees, and Recursions. 219 figures.




Algebraic Combinatorics


Book Description

Written by one of the foremost experts in the field, Algebraic Combinatorics is a unique undergraduate textbook that will prepare the next generation of pure and applied mathematicians. The combination of the author’s extensive knowledge of combinatorics and classical and practical tools from algebra will inspire motivated students to delve deeply into the fascinating interplay between algebra and combinatorics. Readers will be able to apply their newfound knowledge to mathematical, engineering, and business models. The text is primarily intended for use in a one-semester advanced undergraduate course in algebraic combinatorics, enumerative combinatorics, or graph theory. Prerequisites include a basic knowledge of linear algebra over a field, existence of finite fields, and group theory. The topics in each chapter build on one another and include extensive problem sets as well as hints to selected exercises. Key topics include walks on graphs, cubes and the Radon transform, the Matrix–Tree Theorem, and the Sperner property. There are also three appendices on purely enumerative aspects of combinatorics related to the chapter material: the RSK algorithm, plane partitions, and the enumeration of labeled trees. Richard Stanley is currently professor of Applied Mathematics at the Massachusetts Institute of Technology. Stanley has received several awards including the George Polya Prize in applied combinatorics, the Guggenheim Fellowship, and the Leroy P. Steele Prize for mathematical exposition. Also by the author: Combinatorics and Commutative Algebra, Second Edition, © Birkhauser.




Recent Books