Combustion Dynamics and Control in Liquid-Fueled Direct Injection Systems


Book Description

Experiments evaluating the performance of a closed-loop combustion stabilization algorithm show that the method can reduce the magnitude of pressure oscillations in a liquid-fueled combustor by more than 50%. This paper describes the gas-turbine type combustor facility used for the experiments, associated instrumentation, unsteady combustion experiments, and the control scheme employed to suppress the natural thermo-acoustic instability. The combustor exhibits a natural instability at 140 Hz, the result of dynamic coupling between the combustor pressure field and the combustion heat release. Experiments to characterize the influence of operating parameters on the behavior of the instability are described. The control algorithm, amplitude-based pulse-width modulation, is used to modulate flow through one stream of a dual-passage fuel injector at such a phase that the instability amplitude is reduced. The paper concludes with a discussion of the control experiments, showing that the algorithm was successful in reducing the pressure oscillation.




Advanced Direct Injection Combustion Engine Technologies and Development


Book Description

Direct injection enables precise control of the fuel/air mixture so that engines can be tuned for improved power and fuel economy, but ongoing research challenges remain in improving the technology for commercial applications. As fuel prices escalate DI engines are expected to gain in popularity for automotive applications. This important book, in two volumes, reviews the science and technology of different types of DI combustion engines and their fuels. Volume 1 deals with direct injection gasoline and CNG engines, including history and essential principles, approaches to improved fuel economy, design, optimisation, optical techniques and their applications. Reviews key technologies for enhancing direct injection (DI) gasoline engines Examines approaches to improved fuel economy and lower emissions Discusses DI compressed natural gas (CNG) engines and biofuels




Mixture Formation in Internal Combustion Engines


Book Description

A systematic control of mixture formation with modern high-pressure injection systems enables us to achieve considerable improvements of the combustion pr- ess in terms of reduced fuel consumption and engine-out raw emissions. However, because of the growing number of free parameters due to more flexible injection systems, variable valve trains, the application of different combustion concepts within different regions of the engine map, etc., the prediction of spray and m- ture formation becomes increasingly complex. For this reason, the optimization of the in-cylinder processes using 3D computational fluid dynamics (CFD) becomes increasingly important. In these CFD codes, the detailed modeling of spray and mixture formation is a prerequisite for the correct calculation of the subsequent processes like ignition, combustion and formation of emissions. Although such simulation tools can be viewed as standard tools today, the predictive quality of the sub-models is c- stantly enhanced by a more accurate and detailed modeling of the relevant pr- esses, and by the inclusion of new important mechanisms and effects that come along with the development of new injection systems and have not been cons- ered so far. In this book the most widely used mathematical models for the simulation of spray and mixture formation in 3D CFD calculations are described and discussed. In order to give the reader an introduction into the complex processes, the book starts with a description of the fundamental mechanisms and categories of fuel - jection, spray break-up, and mixture formation in internal combustion engines.




Combustion of Liquid Fuel Sprays


Book Description

Combustion of Liquid Fuel Sprays outlines the fundamentals of the combustion of sprays in a unified way which may be applied to any technological application. The book begins with a discussion of the general nature of spray combustion, the sources of liquid fuels used in spray combustion, biomass sources of liquid fuels, and the nature and properties of fuel oils. Subsequent chapters focus on the properties of sprays, the atomization of liquid fuels, and the theoretical modeling of the behavior of a spray flame in a combustion chamber. The nature and control of pollutants from spray combustion, the formation of deposits in oil-fired systems, and the combustion of sprays in furnaces and engines are elucidated as well. The text is intended for students undertaking courses or research in fuel, combustion, and energy studies.




Lean Blowout and Its Robust Sensing in Swirl Combustors


Book Description

Lean combustion is increasingly employed in both ground-based gas turbines and aircraft engines for minimizing NOx emissions. Operating under lean conditions increases the risk of Lean Blowout (LBO). Thus LBO proximity sensors, combined with appropriate blowout prevention systems, have the potential to improve the performance of engines. In previous studies, atmospheric pressure, swirl flames near LBO have been observed to exhibit partial extinction and re-ignition events called LBO precursors. Detecting these precursor events in optical and acoustic signals with simple non-intrusive sensors provided a measure of LBO proximity. This thesis examines robust LBO margin sensing approaches, by exploring LBO precursors in the presence of combustion dynamics and for combustor operating conditions that are more representative of practical combustors, i.e., elevated pressure and preheat temperature operation. To this end, two combustors were used: a gas-fueled, atmospheric pressure combustor that exhibits pronounced combustion dynamics under a wide range of lean conditions, and a low NOx emission liquid-fueled lean direct injection (LDI) combustor, operating at elevated pressure and preheat temperature. In the gas-fueled combustor, flame extinction and re-ignition LBO precursor events were observed in the presence of strong combustion dynamics, and were similar to those observed in dynamically stable conditions. However, the signature of the events in the raw optical signals have different characteristics under various operating conditions. Low-pass filtering and a single threshold-based event detection algorithm provided robust precursor sensing, regardless of the type or level of dynamic instability. The same algorithm provides robust event detection in the LDI combustor, which also exhibits low level dynamic oscillations. Compared to the gas-fueled combustor, the LDI events have weaker signatures, much shorter durations, but considerably higher occurrence rates. The disparity in precursor durations is due to a flame mode switch that occurs during precursors in the gas-fueled combustor, which is absent in the LDI combustor. Acoustic sensing was also investigated in both the combustors. Low-pass filtering is required to reveal a precursor signature under dynamically unstable conditions in the gas-fueled combustor. On the other hand in the LDI combustor, neither the raw signals nor the low-pass filtered signals reveal precursor events. The failure of acoustic sensing is attributed in part to the lower heat release variations, and the similarity in time scales for the precursors and dynamic oscillations in the LDI combustor. In addition, the impact of acoustic reflections from combustor boundaries and transducer placement was addressed by modeling reflections in a one-dimensional combustor geometry with an impedance jump caused by the flame. Implementing LBO margin sensors in gas turbine engines can potentially improve time response during deceleration transients by allowing lower operating margins. Occurrence of precursor events under transient operating conditions was examined with a statistical approach. For example, the rate at which the fuel-air ratio can be safely reduced might be limited by the requirement that at least one precursor occurs before blowout. The statistics governing the probability of a precursor event occurring during some time interval was shown to be reasonably modeled by Poisson statistics. A method has been developed to select a lower operating margin when LBO proximity sensors are employed, such that the lowered margin case provides a similar reliability in preventing LBO as the standard approach utilizing a more restrictive operating margin. Illustrative improvements in transient response and reliabilities in preventing LBO are presented for a model turbofan engine. In addition, an event-based, active LBO control approach for deceleration transients is also demonstrated in the engine simulation.




Automotive Spark-Ignited Direct-Injection Gasoline Engines


Book Description

The process of fuel injection, spray atomization and vaporization, charge cooling, mixture preparation and the control of in-cylinder air motion are all being actively researched and this work is reviewed in detail and analyzed. The new technologies such as high-pressure, common-rail, gasoline injection systems and swirl-atomizing gasoline fuel injections are discussed in detail, as these technologies, along with computer control capabilities, have enabled the current new examination of an old objective; the direct-injection, stratified-charge (DISC), gasoline engine. The prior work on DISC engines that is relevant to current GDI engine development is also reviewed and discussed. The fuel economy and emission data for actual engine configurations have been obtained and assembled for all of the available GDI literature, and are reviewed and discussed in detail. The types of GDI engines are arranged in four classifications of decreasing complexity, and the advantages and disadvantages of each class are noted and explained. Emphasis is placed upon consensus trends and conclusions that are evident when taken as a whole; thus the GDI researcher is informed regarding the degree to which engine volumetric efficiency and compression ratio can be increased under optimized conditions, and as to the extent to which unburned hydrocarbon (UBHC), NOx and particulate emissions can be minimized for specific combustion strategies. The critical area of GDI fuel injector deposits and the associated effect on spray geometry and engine performance degradation are reviewed, and important system guidelines for minimizing deposition rates and deposit effects are presented. The capabilities and limitations of emission control techniques and after treatment hardware are reviewed in depth, and a compilation and discussion of areas of consensus on attaining European, Japanese and North American emission standards presented. All known research, prototype and production GDI engines worldwide are reviewed as to performance, emissions and fuel economy advantages, and for areas requiring further development. The engine schematics, control diagrams and specifications are compiled, and the emission control strategies are illustrated and discussed. The influence of lean-NOx catalysts on the development of late-injection, stratified-charge GDI engines is reviewed, and the relative merits of lean-burn, homogeneous, direct-injection engines as an option requiring less control complexity are analyzed.




Introduction to Modeling and Control of Internal Combustion Engine Systems


Book Description

Internal combustion engines still have a potential for substantial improvements, particularly with regard to fuel efficiency and environmental compatibility. These goals can be achieved with help of control systems. Modeling and Control of Internal Combustion Engines (ICE) addresses these issues by offering an introduction to cost-effective model-based control system design for ICE. The primary emphasis is put on the ICE and its auxiliary devices. Mathematical models for these processes are developed in the text and selected feedforward and feedback control problems are discussed. The appendix contains a summary of the most important controller analysis and design methods, and a case study that analyzes a simplified idle-speed control problem. The book is written for students interested in the design of classical and novel ICE control systems.







Combustion Instabilities in Gas Turbine Engines


Book Description

This book offers gas turbine users and manufacturers a valuable resource to help them sort through issues associated with combustion instabilities. In the last ten years, substantial efforts have been made in the industrial, governmental, and academic communities to understand the unique issues associated with combustion instabilities in low-emission gas turbines. The objective of this book is to compile these results into a series of chapters that address the various facets of the problem. The Case Studies section speaks to specific manufacturer and user experiences with combustion instabilities in the development stage and in fielded turbine engines. The book then goes on to examine The Fundamental Mechanisms, The Combustor Modeling, and Control Approaches.




Combustion Processes in Propulsion


Book Description

Chemical propulsion comprises the science and technology of using chemical reactions of any kind to create thrust and thereby propel a vehicle or object to a desired acceleration and speed. Cumbustion Processes in Propulsion focuses on recent advances in the design of very highly efficient, low-pollution-emitting propulsion systems, as well as advances in testing, diagnostics and analysis. It offers unique coverage of Pulse Detonation Engines, which add tremendous power to jet thrust by combining high pressure with ignition of the air/fuel mixture. Readers will learn about the advances in the reduction of jet noise and toxic fuel emissions-something that is being heavily regulated by relevant government agencies. Lead editor is one of the world's foremost combustion researchers, with contributions from some of the world's leading researchers in combustion engineering Covers all major areas of chemical propulsion-from combustion measurement, analysis and simulation, to advanced control of combustion processes, to noise and emission control Includes important information on advanced technologies for reducing jet engine noise and hazardous fuel combustion emissions