Fundamentals of Probability and Stochastic Processes with Applications to Communications


Book Description

This book provides engineers with focused treatment of the mathematics needed to understand probability, random variables, and stochastic processes, which are essential mathematical disciplines used in communications engineering. The author explains the basic concepts of these topics as plainly as possible so that people with no in-depth knowledge of these mathematical topics can better appreciate their applications in real problems. Applications examples are drawn from various areas of communications. If a reader is interested in understanding probability and stochastic processes that are specifically important for communications networks and systems, this book serves his/her need.




Stochastic Analysis and Diffusion Processes


Book Description

Stochastic Analysis and Diffusion Processes presents a simple, mathematical introduction to Stochastic Calculus and its applications. The book builds the basic theory and offers a careful account of important research directions in Stochastic Analysis. The breadth and power of Stochastic Analysis, and probabilistic behavior of diffusion processes are told without compromising on the mathematical details. Starting with the construction of stochastic processes, the book introduces Brownian motion and martingales. The book proceeds to construct stochastic integrals, establish the ItĂ´ formula, and discuss its applications. Next, attention is focused on stochastic differential equations (SDEs) which arise in modeling physical phenomena, perturbed by random forces. Diffusion processes are solutions of SDEs and form the main theme of this book. The Stroock-Varadhan martingale problem, the connection between diffusion processes and partial differential equations, Gaussian solutions of SDEs, and Markov processes with jumps are presented in successive chapters. The book culminates with a careful treatment of important research topics such as invariant measures, ergodic behavior, and large deviation principle for diffusions. Examples are given throughout the book to illustrate concepts and results. In addition, exercises are given at the end of each chapter that will help the reader to understand the concepts better. The book is written for graduate students, young researchers and applied scientists who are interested in stochastic processes and their applications. The reader is assumed to be familiar with probability theory at graduate level. The book can be used as a text for a graduate course on Stochastic Analysis.




Stochastic Methods and their Applications to Communications


Book Description

Stochastic Methods & their Applications to Communications presents a valuable approach to the modelling, synthesis and numerical simulation of random processes with applications in communications and related fields. The authors provide a detailed account of random processes from an engineering point of view and illustrate the concepts with examples taken from the communications area. The discussions mainly focus on the analysis and synthesis of Markov models of random processes as applied to modelling such phenomena as interference and fading in communications. Encompassing both theory and practice, this original text provides a unified approach to the analysis and generation of continuous, impulsive and mixed random processes based on the Fokker-Planck equation for Markov processes. Presents the cumulated analysis of Markov processes Offers a SDE (Stochastic Differential Equations) approach to the generation of random processes with specified characteristics Includes the modelling of communication channels and interfer ences using SDE Features new results and techniques for the of solution of the generalized Fokker-Planck equation Essential reading for researchers, engineers, and graduate and upper year undergraduate students in the field of communications, signal processing, control, physics and other areas of science, this reference will have wide ranging appeal.




Stochastic Network Calculus


Book Description

Network calculus is a theory dealing with queuing systems found in computer networks. Its focus is on performance guarantees. Central to the theory is the use of alternate algebras such as the min-plus algebra to transform complex network systems into analytically tractable systems. To simplify the ana- sis, another idea is to characterize tra?c and service processes using various bounds. Since its introduction in the early 1990s, network calculus has dev- oped along two tracks—deterministic and stochastic. This book is devoted to summarizing results for stochastic network calculus that can be employed in the design of computer networks to provide stochastic service guarantees. Overview and Goal Like conventional queuing theory, stochastic network calculus is based on properly de?ned tra?c models and service models. However, while in c- ventional queuing theory an arrival process is typically characterized by the inter-arrival times of customers and a service process by the service times of customers, the arrival process and the service process are modeled in n- work calculus respectively by some arrival curve that (maybe probabilis- cally) upper-bounds the cumulative arrival and by some service curve that (maybe probabilistically) lower-bounds the cumulative service. The idea of usingboundstocharacterizetra?candservicewasinitiallyintroducedfor- terministic network calculus. It has also been extended to stochastic network calculus by exploiting the stochastic nature of arrival and service processes.




Theory and Applications of Stochastic Processes


Book Description

Stochastic processes and diffusion theory are the mathematical underpinnings of many scientific disciplines, including statistical physics, physical chemistry, molecular biophysics, communications theory and many more. Many books, reviews and research articles have been published on this topic, from the purely mathematical to the most practical. This book offers an analytical approach to stochastic processes that are most common in the physical and life sciences, as well as in optimal control and in the theory of filltering of signals from noisy measurements. Its aim is to make probability theory in function space readily accessible to scientists trained in the traditional methods of applied mathematics, such as integral, ordinary, and partial differential equations and asymptotic methods, rather than in probability and measure theory.




Communication Networks


Book Description

A modern mathematical approach to the design of communication networks for graduate students, blending control, optimization, and stochastic network theories alongside a broad range of performance analysis tools. Practical applications are illustrated by making connections to network algorithms and protocols. End-of-chapter problems covering a range of difficulties support student learning.




Performance Analysis of Communication Systems


Book Description

Algorithm 396 A.4.6 General Execution Policies 398 A.5 Transient Analysis of DSPNs 401 A.5.1 Solution Algorithm for Periodic DSPNs 401 A.5.2 Solution Algorithm for Non-periodic DSPNs 403 List of Abbreviations 407 Glossary of Notation 411 References 419 Index 433.




Stochastic Models, Information Theory, and Lie Groups, Volume 1


Book Description

This unique two-volume set presents the subjects of stochastic processes, information theory, and Lie groups in a unified setting, thereby building bridges between fields that are rarely studied by the same people. Unlike the many excellent formal treatments available for each of these subjects individually, the emphasis in both of these volumes is on the use of stochastic, geometric, and group-theoretic concepts in the modeling of physical phenomena. Stochastic Models, Information Theory, and Lie Groups will be of interest to advanced undergraduate and graduate students, researchers, and practitioners working in applied mathematics, the physical sciences, and engineering. Extensive exercises and motivating examples make the work suitable as a textbook for use in courses that emphasize applied stochastic processes or differential geometry.




Stochastic Networks


Book Description

A compact, highly-motivated introduction to some of the stochastic models found useful in the study of communications networks.




Stochastic Analysis, Stochastic Systems, and Applications to Finance


Book Description

Pt. I. Stochastic analysis and systems. 1. Multidimensional Wick-Ito formula for Gaussian processes / D. Nualart and S. Ortiz-Latorre. 2. Fractional white noise multiplication / A.H. Tsoi. 3. Invariance principle of regime-switching diffusions / C. Zhu and G. Yin -- pt. II. Finance and stochastics. 4. Real options and competition / A. Bensoussan, J.D. Diltz and S.R. Hoe. 5. Finding expectations of monotone functions of binary random variables by simulation, with applications to reliability, finance, and round robin tournaments / M. Brown, E.A. Pekoz and S.M. Ross. 6. Filtering with counting process observations and other factors : applications to bond price tick data / X. Hu, D.R. Kuipers and Y. Zeng. 7. Jump bond markets some steps towards general models in applications to hedging and utility problems / M. Kohlmann and D. Xiong. 8. Recombining tree for regime-switching model : algorithm and weak convergence / R.H. Liu. 9. Optimal reinsurance under a jump diffusion model / S. Luo. 10. Applications of counting processes and martingales in survival analysis / J. Sun. 11. Stochastic algorithms and numerics for mean-reverting asset trading / Q. Zhang, C. Zhuang and G. Yin