Ground Improvement, Third Edition


Book Description

When finding another location, redesigning a structure, or removing troublesome ground at a project site are not practical options, prevailing ground conditions must be addressed. Improving the ground—modifying its existing physical properties to enable effective, economic, and safe construction—to achieve appropriate engineering performance is an increasingly successful approach. This third edition of Ground Improvement provides a comprehensive overview of the major ground improvement techniques in use worldwide today. Written by recognized experts who bring a wealth of knowledge and experience to bear on their contributions, the chapters are fully updated with recent developments including advancements in equipment and methods since the last edition. The text provides an overview of the processes and the key geotechnical and design considerations as well as equipment needed for successful execution. The methods described are well illustrated with relevant case histories and include the following approaches: Densification using deep vibro techniques or dynamic compaction Consolidation employing deep fabricated drains and associated methods Injection techniques, such as permeation and jet grouting, soil fracture grouting, and compaction grouting New in-situ soil mixing processes, including trench-mixing TRD and panel-mixing CSM approaches The introductory chapter touches on the historical development, health and safety, greenhouse gas emissions, and two less common techniques: blasting and the only reversible process, ground freezing. This practical and established guide provides readers with a solid basis for understanding and further study of the most widely used processes for ground improvement. It is particularly relevant for civil and geotechnical engineers as well as contractors involved in piling and ground engineering of any kind. It would also be useful for advanced graduate and postgraduate civil engineering and geotechnical students.




Analytical Methods in Petroleum Upstream Applications


Book Description

Effective measurement of the composition and properties of petroleum is essential for its exploration, production, and refining; however, new technologies and methodologies are not adequately documented in much of the current literature. Analytical Methods in Petroleum Upstream Applications explores advances in the analytical methods and instrumentation that allow more accurate determination of the components, classes of compounds, properties, and features of petroleum and its fractions. Recognized experts explore a host of topics, including: A petroleum molecular composition continuity model as a context for other analytical measurements A modern modular sampling system for use in the lab or the process area to collect and control samples for subsequent analysis The importance of oil-in-water measurements and monitoring The chemical and physical properties of heavy oils, their fractions, and products from their upgrading Analytical measurements using gas chromatography and nuclear magnetic resonance (NMR) applications Asphaltene and heavy ends analysis Chemometrics and modeling approaches for understanding petroleum composition and properties to improve upstream, midstream, and downstream operations Due to the renaissance of gas and oil production in North America, interest has grown in analytical methods for a wide range of applications. The understanding provided in this text is designed to help chemists, geologists, and chemical and petroleum engineers make more accurate estimates of the crude value to specific refinery configurations, providing insight into optimum development and extraction schemes.




Handbook on Tunnels and Underground Works


Book Description

This book set provides a new, global, updated, thorough, clear, and practical risk-based approach to tunnelling design and construction methods, and discusses detailed examples of solutions applied to relevant case histories. It is organized in three sequential and integrated volumes: Volume 1: Concept – Basic Principles of Design Volume 2: Construction – Methods, Equipment, Tools and Materials Volume 3: Case Histories and Best Practices The book covers all aspects of tunnelling, giving useful and practical information about design (Vol. 1), construction (Vol. 2), and best practices (Vol. 3). It provides the following features and benefits: updated vision on tunnelling design, tools, materials, and construction balanced mix of theory, technology, and applied experience different and harmonized points of view from academics, professionals, and contractors easy consultation in the form of a handbook risk-oriented approach to tunnelling problems. The tunnelling industry is amazingly widespread and increasingly important all over the world, particularly in developing countries. The possible audience of the book are engineers, geologists, designers, constructors, providers, contractors, public and private customers, and, in general, technicians involved in the tunnelling and underground works industry. It is also a suitable source of information for industry professionals, senior undergraduate and graduate students, researchers, and academics.




Earthquake Geotechnical Engineering for Protection and Development of Environment and Constructions


Book Description

Earthquake Geotechnical Engineering for Protection and Development of Environment and Constructions contains invited, keynote and theme lectures and regular papers presented at the 7th International Conference on Earthquake Geotechnical Engineering (Rome, Italy, 17-20 June 2019. The contributions deal with recent developments and advancements as well as case histories, field monitoring, experimental characterization, physical and analytical modelling, and applications related to the variety of environmental phenomena induced by earthquakes in soils and their effects on engineered systems interacting with them. The book is divided in the sections below: Invited papers Keynote papers Theme lectures Special Session on Large Scale Testing Special Session on Liquefact Projects Special Session on Lessons learned from recent earthquakes Special Session on the Central Italy earthquake Regular papers Earthquake Geotechnical Engineering for Protection and Development of Environment and Constructions provides a significant up-to-date collection of recent experiences and developments, and aims at engineers, geologists and seismologists, consultants, public and private contractors, local national and international authorities, and to all those involved in research and practice related to Earthquake Geotechnical Engineering.




Advancements in Geotechnical Engineering


Book Description

This book intends directly the practical engineers, who will be of great interest in reading the interesting chapters. Earthwork projects are critical components in civil construction and often require detailed management techniques and unique solution methods to address failures. Being earthbound, earthwork is influenced by geomaterial properties at the onset of a project. Hence, an understanding of the in-situ soil properties and all geotechnical aspects is essential. Analytical methods for earth structures remain critical for researchers due to the mechanical complexity of the system. Striving for better earthwork project management, the geotechnical engineering community continues to find improved testing techniques for determining sensitive properties of soil and rock, including stress wave-based, non-destructive testing methods. To minimize failure during earthwork construction, past case studies and data may reveal useful lessons and information to improve project management and minimize economic losses.




Soil Improvement and Ground Modification Methods


Book Description

Written by an author with more than 25 years of field and academic experience, Soil Improvement and Ground Modification Methods explains ground improvement technologies for converting marginal soil into soil that will support all types of structures. Soil improvement is the alteration of any property of a soil to improve its engineering performance. Some sort of soil improvement must happen on every construction site. This combined with rapid urbanization and the industrial growth presents a huge dilemma to providing a solid structure at a competitive price. The perfect guide for new or practicing engineers, this reference covers projects involving soil stabilization and soil admixtures, including utilization of industrial waste and by-products, commercially available soil admixtures, conventional soil improvement techniques, and state-of-the-art testing methods. - Conventional soil improvement techniques and state-of-the-art testing methods - Methods for mitigating or removing the risk of liquefaction in the event of major vibrations - Structural elements for stabilization of new or existing construction industrial waste/by-products, commercially available soil - Innovative techniques for drainage, filtration, dewatering, stabilization of waste, and contaminant control and removal




Compaction Grouting Consensus Guide


Book Description

Standard ASCE/G-I 53-19 focuses on the practical and engineering aspects of compaction grouting as a technique of ground improvement applicable to a wide range of soils.




Geotechnics for Sustainable Infrastructure Development


Book Description

This book presents 09 keynote and invited lectures and 177 technical papers from the 4th International Conference on Geotechnics for Sustainable Infrastructure Development, held on 28-29 Nov 2019 in Hanoi, Vietnam. The papers come from 35 countries of the five different continents, and are grouped in six conference themes: 1) Deep Foundations; 2) Tunnelling and Underground Spaces; 3) Ground Improvement; 4) Landslide and Erosion; 5) Geotechnical Modelling and Monitoring; and 6) Coastal Foundation Engineering. The keynote lectures are devoted by Prof. Harry Poulos (Australia), Prof. Adam Bezuijen (Belgium), Prof. Delwyn Fredlund (Canada), Prof. Lidija Zdravkovic (UK), Prof. Masaki Kitazume (Japan), and Prof. Mark Randolph (Australia). Four invited lectures are given by Prof. Charles Ng, ISSMGE President, Prof.Eun Chul Shin, ISSMGE Vice-President for Asia, Prof. Norikazu Shimizu (Japan), and Dr.Kenji Mori (Japan).




Official Register 2008


Book Description

The Official Register is published annually to provide ready access to governing documents, statistics, and general information about ASCE for leadership, members, and staff. It includes the ASCE constitution, bylaws, rules, and code of ethics; as well as information about member qualifications and benefits; section and branch contacts; technical, professional, educational, and student activities; committee appointments; past and present officers; honors and awards; CERF/IIEC; the ASCE Foundation; and staff contacts. There are also sections with constitution, bylaws, and committees for Geo-Institute; Structural Engineering Institute (SEI); Environmental and Water Resources Institute (EWRI); Architectural Engineering Institute (AEI); Coasts, Oceans, Ports, and Rivers Institute (COPRI); Construction Institute (CI); and Transportation & Development Institute (T&DI).




Geotechnical Engineering for the Preservation of Monuments and Historic Sites III


Book Description

The conservation of monuments and historic sites is one of the most challenging problems facing modern civilization. It involves, in inextricable patterns, factors belonging to different fields (cultural, humanistic, social, technical, economical, administrative) and the requirements of safety and use appear to be (or often are) in conflict with the respect of the integrity of the monuments. The complexity of the topic is such that a shared framework of reference is still lacking among art historians, architects, structural and geotechnical engineers. The complexity of the subject is such that a shared frame of reference is still lacking among art historians, architects, architectural and geotechnical engineers. And while there are exemplary cases of an integral approach to each building element with its static and architectural function, as a material witness to the culture and construction techniques of the original historical period, there are still examples of uncritical reliance on modern technology leading to the substitution from earlier structures to new ones, preserving only the iconic look of the original monument. Geotechnical Engineering for the Preservation of Monuments and Historic Sites III collects the contributions to the eponymous 3rd International ISSMGE TC301 Symposium (Naples, Italy, 22-24 June 2022). The papers cover a wide range of topics, which include: - Principles of conservation, maintenance strategies, case histories - The knowledge: investigations and monitoring - Seismic risk, site effects, soil structure interaction - Effects of urban development and tunnelling on built heritage - Preservation of diffuse heritage: soil instability, subsidence, environmental damages The present volume aims at geotechnical engineers and academics involved in the preservation of monuments and historic sites worldwide.