Complex Interpolation between Hilbert, Banach and Operator Spaces


Book Description

Motivated by a question of Vincent Lafforgue, the author studies the Banach spaces $X$ satisfying the following property: there is a function $\varepsilon\to \Delta_X(\varepsilon)$ tending to zero with $\varepsilon>0$ such that every operator $T\colon \ L_2\to L_2$ with $\T\\le \varepsilon$ that is simultaneously contractive (i.e., of norm $\le 1$) on $L_1$ and on $L_\infty$ must be of norm $\le \Delta_X(\varepsilon)$ on $L_2(X)$. The author shows that $\Delta_X(\varepsilon) \in O(\varepsilon^\alpha)$ for some $\alpha>0$ iff $X$ is isomorphic to a quotient of a subspace of an ultraproduct of $\theta$-Hilbertian spaces for some $\theta>0$ (see Corollary 6.7), where $\theta$-Hilbertian is meant in a slightly more general sense than in the author's earlier paper (1979).




The Operator Hilbert Space $OH$, Complex Interpolation and Tensor Norms


Book Description

In the recently developed duality theory of operator spaces, bounded operators are replaced by 'completely bounded' ones, isomorphism by 'complete isomorphisms' and Banach spaces by 'operator spaces'. This allows for distinguishing between the various ways in which a given Banach space can be embedded isometrically into [italic capital]B([italic capital]H) (with H being Hilbert). One of the main results is the observation that there is a central object in this class: there is a unique self dual Hilbertian operator space (which we denote by [italic capitals]OH) which seems to play the same central role in the category of operator spaces that Hilbert spaces play in the category of Banach spaces.







Interpolation Theory and Applications


Book Description

This volume contains the Proceedings of the Conference on Interpolation Theory and Applications in honor of Professor Michael Cwikel (Miami, FL, 2006). The central topic of this book is interpolation theory in its broadest sense, with special attention to its applications to analysis. The articles include applications to classical analysis, harmonic analysis, partial differential equations, function spaces, image processing, geometry of Banach spaces, and more. This volume emphasizes remarkable connections between several branches of pure and applied analysis. Graduate students and researchers in analysis will find it very useful.




Interpolation of Operators


Book Description

This book presents interpolation theory from its classical roots beginning with Banach function spaces and equimeasurable rearrangements of functions, providing a thorough introduction to the theory of rearrangement-invariant Banach function spaces. At the same time, however, it clearly shows how the theory should be generalized in order to accommodate the more recent and powerful applications. Lebesgue, Lorentz, Zygmund, and Orlicz spaces receive detailed treatment, as do the classical interpolation theorems and their applications in harmonic analysis.The text includes a wide range of techniques and applications, and will serve as an amenable introduction and useful reference to the modern theory of interpolation of operators.




Interpolation Spaces


Book Description

The works of Jaak Peetre constitute the main body of this treatise. Important contributors are also J. L. Lions and A. P. Calderon, not to mention several others. We, the present authors, have thus merely compiled and explained the works of others (with the exception of a few minor contributions of our own). Let us mention the origin of this treatise. A couple of years ago, J. Peetre suggested to the second author, J. Lofstrom, writing a book on interpolation theory and he most generously put at Lofstrom's disposal an unfinished manu script, covering parts of Chapter 1-3 and 5 of this book. Subsequently, LOfstrom prepared a first rough, but relatively complete manuscript of lecture notes. This was then partly rewritten and thouroughly revised by the first author, J. Bergh, who also prepared the notes and comment and most of the exercises. Throughout the work, we have had the good fortune of enjoying Jaak Peetre's kind patronage and invaluable counsel. We want to express our deep gratitude to him. Thanks are also due to our colleagues for their support and help. Finally, we are sincerely grateful to Boe1 Engebrand, Lena Mattsson and Birgit Hoglund for their expert typing of our manuscript.




Interpolation Theory


Book Description

This book is the third edition of the 1999 lecture notes of the courses on interpolation theory that the author delivered at the Scuola Normale in 1998 and 1999. In the mathematical literature there are many good books on the subject, but none of them is very elementary, and in many cases the basic principles are hidden below great generality. In this book the principles of interpolation theory are illustrated aiming at simplification rather than at generality. The abstract theory is reduced as far as possible, and many examples and applications are given, especially to operator theory and to regularity in partial differential equations. Moreover the treatment is self-contained, the only prerequisite being the knowledge of basic functional analysis.







Analysis in Banach Spaces


Book Description

The present volume develops the theory of integration in Banach spaces, martingales and UMD spaces, and culminates in a treatment of the Hilbert transform, Littlewood-Paley theory and the vector-valued Mihlin multiplier theorem. Over the past fifteen years, motivated by regularity problems in evolution equations, there has been tremendous progress in the analysis of Banach space-valued functions and processes. The contents of this extensive and powerful toolbox have been mostly scattered around in research papers and lecture notes. Collecting this diverse body of material into a unified and accessible presentation fills a gap in the existing literature. The principal audience that we have in mind consists of researchers who need and use Analysis in Banach Spaces as a tool for studying problems in partial differential equations, harmonic analysis, and stochastic analysis. Self-contained and offering complete proofs, this work is accessible to graduate students and researchers with a background in functional analysis or related areas.




Pick Interpolation and Hilbert Function Spaces


Book Description

The book first rigorously develops the theory of reproducing kernel Hilbert spaces. The authors then discuss the Pick problem of finding the function of smallest $H^infty$ norm that has specified values at a finite number of points in the disk. Their viewpoint is to consider $H^infty$ as the multiplier algebra of the Hardy space and to use Hilbert space techniques to solve the problem. This approach generalizes to a wide collection of spaces. The authors then consider the interpolation problem in the space of bounded analytic functions on the bidisk and give a complete description of the solution. They then consider very general interpolation problems. The book includes developments of all the theory that is needed, including operator model theory, the Arveson extension theorem, and the hereditary functional calculus.