Shock Wave-Boundary-Layer Interactions


Book Description

Shock wave-boundary-layer interaction (SBLI) is a fundamental phenomenon in gas dynamics that is observed in many practical situations, ranging from transonic aircraft wings to hypersonic vehicles and engines. SBLIs have the potential to pose serious problems in a flowfield; hence they often prove to be a critical - or even design limiting - issue for many aerospace applications. This is the first book devoted solely to a comprehensive, state-of-the-art explanation of this phenomenon. It includes a description of the basic fluid mechanics of SBLIs plus contributions from leading international experts who share their insight into their physics and the impact they have in practical flow situations. This book is for practitioners and graduate students in aerodynamics who wish to familiarize themselves with all aspects of SBLI flows. It is a valuable resource for specialists because it compiles experimental, computational and theoretical knowledge in one place.







Turbulent Shear Layers in Supersonic Flow


Book Description

A good understanding of turbulent compressible flows is essential to the design and operation of high-speed vehicles. Such flows occur, for example, in the external flow over the surfaces of supersonic aircraft, and in the internal flow through the engines. Our ability to predict the aerodynamic lift, drag, propulsion and maneuverability of high-speed vehicles is crucially dependent on our knowledge of turbulent shear layers, and our understanding of their behavior in the presence of shock waves and regions of changing pressure. Turbulent Shear Layers in Supersonic Flow provides a comprehensive introduction to the field, and helps provide a basis for future work in this area. Wherever possible we use the available experimental work, and the results from numerical simulations to illustrate and develop a physical understanding of turbulent compressible flows.




Computation of Three-Dimensional Complex Flows


Book Description

Der Sammelband enthält Beiträge einer Tagung über die Simulation von dreidimensionalen Flüssigkeiten. Sie geben einen Überblick über den Stand des Wissens auf dem Gebiet der numerischen Simulation der Turbulenz, angewandt auf eine weite Spanne von Problemen wie Aerodynamik, Nicht-Newtonsche Flüssigkeiten, Konvektion.This volume contains the material presented at the IMACS-COST Conference on CFD, Three-Dimensional Complex Flows, held in Lausanne (Switzerland), September 13 - 15, 1995. It gives an overview of the current state of numerical simulation and turbulence modelling applied to a wide range of fluid flow problems such as an example aerodynamics, non-Newtonian flows, transition, thermal convection.










Characterization of the Flowfield Near a Wrap-Around Fin at Supersonic Speeds


Book Description

A wall-mounted semi-cylindrical model fitted with a single wrap- around in (WAF) has been investigated numerically and experimentally, with the objective of characterizing the mean and turbulent flowfield near a WAF in a supersonic flowfield. Numerical and experimental results are used to determine the nature of the flowfield and quantify the effects of fin curvature on the character of the flow near WAFs. This research has been motivated by the need to identify possible sources of a high-speed rolling moment reversal observed in sub-scale flight tests. Detailed mean flow and turbulence measurements were obtained in the AFIT Mach 3 wind tunnel using conventional probes and cross-wire hot-film anemometry at a series of stations upstream of and aft of the fin shock/boundary layer interaction. Hot-film anemometry results showed the turbulence intensity and Reynolds shear stress in the fuselage boundary layer to be far greater on the concave side of the fin than on the convex side. Mean flow was also obtained in the AFIT Mach 5 wind tunnel using conventional pressure probes. Numerical results were also obtained at the test conditions employing the algebraic eddy viscosity model of Baldwin and Lomax. Correlation with experimental data suggests that the calculations have captured the flow physics involved in this complicated flowfield. The calculations, corroborated by experimental results, indicate that a vortex exists in the fin/body juncture region on the convex side of the fin. This feature is not captured by the oft- used inviscid methods, and can greatly influence the pressure loading on the fin near the root.




Aerospace Science and Engineering


Book Description

The papers of this conference focus on the following topics: dynamics and control, navigation, aeroacoustics, fluid dynamics, human-machine interaction, structures, maintenance and operations, sustainability of aeronautics and space, space economy, propulsion, additive manufacturing, sensors, aerospace systems, aeroelasticity, artificial intelligence, and UAV (unmanned aerial vehicle). Keywords: Autonomous Navigation, Visual Navigation, Space Mission, Radar Detection. Aeroacoustics, Plasma Formation, Digital Technologies, Heat Transfer, Vibration Analysis, Future Passenger Aircraft, Acoustic Metamaterial Design, Highly Energetic Materials, Bistatic Radar, Helicopter Tracking, Supersonic Parachute, Dynamical Modeling, Composite Beams, Additive Manufacturing, BCC Cell Characterization, Interplanetary Trajectory Design, Thermoelastic Properties of Composites, Offner Spectrometer, Nanosatellite, Aeroelastic Analysis, Fluid-Structure Interaction Models, Composite Laminates, Climate Change, AI Autonomous Navigation, Optical Sensors, Cyberattacks, Optical Fiber Sensor, Fracture Analysis, Deep-Space Autonomous Navigation, Noise Sources. Photogrammetric Analysis, Acoustic Metamaterials, CO2 Emission, Supersonic Transport.




Frontiers of Computational Fluid Dynamics 2002


Book Description

This series of volumes on the ?Frontiers of Computational Fluid Dynamics? was introduced to honor contributors who have made a major impact on the field. The first volume was published in 1994 and was dedicated to Prof Antony Jameson; the second was published in 1998 and was dedicated to Prof Earl Murman. The volume is dedicated to Prof Robert MacCormack.The twenty-six chapters in the current volume have been written by leading researchers from academia, government laboratories, and industry. They present up-to-date descriptions of recent developments in techniques for numerical analysis of fluid flow problems, and applications of these techniques to important problems in industry, as well as the classic paper that introduced the ?MacCormack scheme? to the world.