High-Performance Computing and Networking


Book Description

High-performance computing and networking (HPCN) is driven by several initiatives in Europe, the United States, and Japan. In Europe several groups encouraged the Commission of the European Communities to start an HPCN programme. This two-volume work presents the proceedings of HPCN Europe 1994. Volume 2 includes sections on: networking, future European cooperative working possibilities in industry and research, HPCN computer centers aspects, performance evaluation and benchmarking, numerical algorithms for engineering, domain decomposition in engineering, parallel programming environments, load balancing and performance optimization, monitoring, debugging, and fault tolerance, programming languages in HPC, compilers and data parallel structures, architectural aspects, and late papers.







Supercomputing Project


Book Description







High-performance Computing


Book Description




Parallel Solution of Integral Equation-Based EM Problems in the Frequency Domain


Book Description

A step-by-step guide to parallelizing cem codes The future of computational electromagnetics is changing drastically as the new generation of computer chips evolves from single-core to multi-core. The burden now falls on software programmers to revamp existing codes and add new functionality to enable computational codes to run efficiently on this new generation of multi-core CPUs. In this book, you'll learn everything you need to know to deal with multi-core advances in chip design by employing highly efficient parallel electromagnetic code. Focusing only on the Method of Moments (MoM), the book covers: In-Core and Out-of-Core LU Factorization for Solving a Matrix Equation A Parallel MoM Code Using RWG Basis Functions and ScaLAPACK-Based In-Core and Out-of-Core Solvers A Parallel MoM Code Using Higher-Order Basis Functions and ScaLAPACK-Based In-Core and Out-of-Core Solvers Turning the Performance of a Parallel Integral Equation Solver Refinement of the Solution Using the Conjugate Gradient Method A Parallel MoM Code Using Higher-Order Basis Functions and Plapack-Based In-Core and Out-of-Core Solvers Applications of the Parallel Frequency Domain Integral Equation Solver Appendices are provided with detailed information on the various computer platforms used for computation; a demo shows you how to compile ScaLAPACK and PLAPACK on the Windows® operating system; and a demo parallel source code is available to solve the 2D electromagnetic scattering problems. Parallel Solution of Integral Equation-Based EM Problems in the Frequency Domain is indispensable reading for computational code designers, computational electromagnetics researchers, graduate students, and anyone working with CEM software.