Computational Methods for Kinetic Models of Magnetically Confined Plasmas


Book Description

Because magnetically confined plasmas are generally not found in a state of thermodynamic equilibrium, they have been studied extensively with methods of applied kinetic theory. In closed magnetic field line confinement devices such as the tokamak, non-Maxwellian distortions usually occur as a result of auxiliary heating and transport. In magnetic mirror configurations even the intended steady state plasma is far from local thermodynamic equilibrium because of losses along open magnetic field lines. In both of these major fusion devices, kinetic models based on the Boltzmann equation with Fokker-Planck collision terms have been successful in representing plasma behavior. The heating of plasmas by energetic neutral beams or microwaves, the production and thermalization of a-particles in thermonuclear reactor plasmas, the study of runaway electrons in tokamaks, and the performance of two-energy compo nent fusion reactors are some examples of processes in which the solution of kinetic equations is appropriate and, moreover, generally necessary for an understanding of the plasma dynamics. Ultimately, the problem is to solve a nonlinear partial differential equation for the distribution function of each charged plasma species in terms of six phase space variables and time. The dimensionality of the problem may be reduced through imposing certain symmetry conditions. For example, fewer spatial dimensions are needed if either the magnetic field is taken to be uniform or the magnetic field inhomogeneity enters principally through its variation along the direction of the field.







Computational Techniques for Fluid Dynamics


Book Description

As indicated in Vol. 1, the purpose of this two-volume textbook is to pro vide students of engineering, science and applied mathematics with the spe cific techniques, and the framework to develop skill in using them, that have proven effective in the various branches of computational fluid dy namics Volume 1 describes both fundamental and general techniques that are relevant to all branches of fluid flow. This volume contains specific tech niques applicable to the different categories of engineering flow behaviour, many of which are also appropriate to convective heat transfer. The contents of Vol. 2 are suitable for specialised graduate courses in the engineering computational fluid dynamics (CFD) area and are also aimed at the established research worker or practitioner who has already gained some fundamental CFD background. It is assumed that the reader is famil iar with the contents of Vol. 1. The contents of Vol. 2 are arranged in the following way: Chapter 11 de velops and discusses the equations governing fluid flow and introduces the simpler flow categories for which specific computational techniques are considered in Chaps. 14-18. Most practical problems involve computational domain boundaries that do not conveniently coincide with coordinate lines. Consequently, in Chap. 12 the governing equations are expressed in generalised curvilinear coordinates for use in arbitrary computational domains. The corresponding problem of generating an interior grid is considered in Chap. 13.




Computational Techniques for Fluid Dynamics 1


Book Description

The purpose of this two-volume textbook is to provide students of engineer ing, science and applied mathematics with the specific techniques, and the framework to develop skill in using them, that have proven effective in the various branches of computational fluid dynamics (CFD). Volume 1 de scribes both fundamental and general techniques that are relevant to all branches of fluid flow. Volume 2 provides specific techniques, applicable to the different categories of engineering flow behaviour, many of which are also appropriate to convective heat transfer. An underlying theme of the text ist that the competing formulations which are suitable for computational fluid dynamics, e.g. the finite differ ence, finite element, finite volume and spectral methods, are closely related and can be interpreted as part of a unified structure. Classroom experience indicates that this approach assists, considerably, the student in acquiring a deeper understanding of the strengths and weaknesses of the alternative computational methods. Through the provision of 24 computer programs and associated exam ples and problems, the present text is also suitable for established research workers and practitioners who wish to acquire computational skills without the benefit of formal instruction. The text includes the most up-to-date techniques and is supported by more than 300 figures and 500 references.










Ec-9: Proceedings Of The Ninth Joint Workshop On Electron Cyclotron Emission And Electron Cyclotron Heating


Book Description

The conference proceedings will include the papers of approximately 50 key specialists from most of the world's major fusion laboratories, including the European Community, the U.S., Russia and the PRC. The unifying themes are the emission of electron cyclotron waves by high temperature plasmas and the reciprocal process, absorption, which can be used for heating, non inductive current drive and diagnostic purposes.




EC-12


Book Description

The 12th Joint Workshop on Electron Cyclotron Emission and Electron Cyclotron Resonance Heating (EC-12) was held in Aix-en-Provence (France) from May 13 to 16, 2002. This workshop was concerned with the interaction of electromagnetic waves and hot plasmas, a subject of great importance in the framework of research on controlled thermonuclear fusion. Using as a fuel a mixture of deuterium and tritium, which can be extracted from sea water, this is a very promising way to develop an intrinsically safe reactor. The workshop gathered approximately one hundred specialists in the production, use and theory of millimetre waves for heating and diagnostics of fusion plasmas.




Grid Generation Methods


Book Description

This text is an introduction to methods of grid generation technology in scientific computing. Special attention is given to methods developed by the author for the treatment of singularly-perturbed equations, e.g. in modeling high Reynolds number flows. Functionals of conformality, orthogonality, energy and alignment are discussed.




Computational Techniques for Fluid Dynamics 2


Book Description

The purpose and organisation of this book are described in the preface to the first edition (1988). In preparing this edition minor changes have been made, par ticularly to Chap. 1 (Vol. 1) to keep it reasonably current, and to upgrade the treatment of specific techniques, particularly in Chaps. 12-14 and 16-18. How ever, the rest of the book (Vols. 1 and 2) has required only minor modification to clarify the presentation and to modify or replace individual problems to make them more effective. The answers to the problems are available in Solutions Manual jor Computational Techniques jor Fluid Dynamics by K. Srinivas and C. A. J. Fletcher, published by Springer-Verlag, Heidelberg, 1991. The computer programs have also been reviewed and tidied up. These are available on an IBM compatible floppy disc direct from the author. I would like to take this opportunity to thank the many readers for their usually generous comments about the first edition and particularly those readers who went to the trouble of drawing specific errors to my attention. In this revised edi tion considerable effort has been made to remove a number of minor errors that had found their way into the original. I express the hope that no errors remain but welcome communication that will help me improve future editions. In preparing this revised edition I have received considerable help from Dr. K.