Computer Applications in Plasma Science and Engineering


Book Description

This volume, which contains 15 contributions, is based on a minicourse held at the 1987 IEEE Plasma Science Meeting. The purpose of the lectures in the course was to acquaint the students with the multidisciplinary nature of computational techniques and the breadth of research areas in plasma science in which computation can address important physics and engineering design issues. These involve: electric and magnetic fields, MHD equations, chemistry, radiation, ionization etc. The contents of the contributions, written subsequent to the minicourse, stress important aspects of computer applications. They are: 1) the numerical methods used; 2) the range of applicability; 3) how the methods are actually employed in research and in the design of devices; and, as a compendium, 4) the multiplicity of approaches possible for any one problem. The materials in this book are organized by both subject and applications which display some of the richness in computational plasma physics.







Plasma Science


Book Description

Plasma Science and Engineering transforms fundamental scientific research into powerful societal applications, from materials processing and healthcare to forecasting space weather. Plasma Science: Enabling Technology, Sustainability, Security and Exploration discusses the importance of plasma research, identifies important grand challenges for the next decade, and makes recommendations on funding and workforce. This publication will help federal agencies, policymakers, and academic leadership understand the importance of plasma research and make informed decisions about plasma science funding, workforce, and research directions.




Plasma and Fusion Science


Book Description

In this new book, an interdisciplinary and international team of experts provides an exploration of the emerging plasma science that is poised to make the plasma technology a reality in the manufacturing sector. The research presented here will stimulate new ideas, methods, and applications in the field of plasma science and nanotechnology. Plasma technology applications are being developed that could impact the global market for power, electronics, mineral, and other fuel commodities. Currently, plasma science is described as a revolutionary discipline in terms of its possible impact on industrial applications. It offers potential solutions to many problems using emerging techniques. In this book the authors provide a broad overview of recent trends in field plasma science and nanotechnology. Divided into several parts, Plasma and Fusion Science: From Fundamental Research to Technological Applications explores some basic plasma applications and research, space and atmospheric plasma, nuclear fusion, and laser plasma and industrial applications of plasma. A wide variety of cutting-edge topics are covered, including: • basic plasma physics • computer modeling for plasma • exotic plasma (including dusty plasma) • industrial plasma applications • laser plasma • nuclear fusion technology • plasma diagnostics • plasma processing • pulsed power • space astrophysical plasma • plasma and nanotechnology Pointing to current and possible future developments in plasma science and technology, the diverse research presented here will be valuable for researchers, scientists, industry professionals, and others involved in the revolutionary field of plasma and fusion science.




Plasma Electronics


Book Description

Without plasma processing techniques, recent advances in microelectronics fabrication would not have been possible. But beyond simply enabling new capabilities, plasma-based techniques hold the potential to enhance and improve many processes and applications. They are viable over a wide range of size and time scales, and can be used for deposition,




Proceedings of the 1995 International Conference on Parallel Processing


Book Description

This set of technical books contains all the information presented at the 1995 International Conference on Parallel Processing. This conference, held August 14 - 18, featured over 100 lectures from more than 300 contributors, and included three panel sessions and three keynote addresses. The international authorship includes experts from around the globe, from Texas to Tokyo, from Leiden to London. Compiled by faculty at the University of Illinois and sponsored by Penn State University, these Proceedings are a comprehensive look at all that's new in the field of parallel processing.




Computational Plasma Physics


Book Description

The physics of plasmas is an extremely rich and complex subject as the variety of topics addressed in this book demonstrates. This richness and complexity demands new and powerful techniques for investigating plasma physics. An outgrowth from his graduate course teaching, now with corrections, Tajima's text provides not only a lucid introduction to computational plasma physics, but also offers the reader many examples of the way numerical modeling, properly handled, can provide valuable physical understanding of the nonlinear aspects so often encountered in both laboratory and astrophysical plasmas. Included here are computational methods for modern nonlinear physics as applied to hydrodynamic turbulence, solitons, fast reconnection of magnetic fields, anomalous transports, dynamics of the sun, and more. The text contains examples of problems now solved using computational techniques including those concerning finite-size particles, spectral techniques, implicit differencing, gyrokinetic approaches, and particle simulation.




Generation and Application of High Power Microwaves


Book Description

Written at the graduate level, Generation and Application of High Power Microwaves discusses the basic physics of the generation of microwave and radiofrequency waves in the megawatt power range and the application of these ideas to a range of devices such as klystrons, gyrotrons, and free electron lasers. The book also contains chapters covering the transmission of the power through waveguides and the problems associated with mode conversion in transmission lines. The main application area covered is the heating and current drive in tokamaks and other devices for research into controlled nuclear fusion. Other applications of high power microwave technology are not neglected, and among those discussed are multiple charged ion and soft x-ray sources, electron spin resonance spectroscopy, advanced materials processing, millimeter wave radar, and supercolliders.




An Introduction to Plasma Physics and Its Space Applications, Volume 1


Book Description

The growing number of scientific and technological applications of plasma physics in the field of Aerospace Engineering requires that graduate students and professionals understand their principles. This introductory book is the expanded version of class notes of lectures I taught for several years to students of Aerospace Engineering and Physics. It is intended as a reading guide, addressed to students and non-specialists to tackle later with more advanced texts. To make the subject more accessible the book does not follow the usual organization of standard textbooks in this field and is divided in two parts. The first introduces the basic kinetic theory (molecular collisions, mean free path, etc.) of neutral gases in equilibrium in connection to the undergraduate physics courses. The basic properties of ionized gases and plasmas (Debye length, plasma frequencies, etc.) are addressed in relation to their equilibrium states and the collisional processes at the microscopic level. The physical description of short and long-range (Coulomb) collisions and the more relevant collisions (elementary processes) between electrons' ions and neutral atoms or molecules are discussed. The second part introduces the physical description of plasmas as a statistical system of interacting particles introducing advanced concepts of kinetic theory, (non-equilibrium distribution functions, Boltzmann collision operator, etc). The fluid transport equations for plasmas of electron ions and neutral atoms and the hydrodynamic models of interest in space science and plasma technology are derived. The plasma production in the laboratory in the context of the physics of electric breakdown is also discussed. Finally, among the myriad of aerospace applications of plasma physics, the low pressure microwave electron multipactor breakdown and plasma thrusters for space propulsion are presented in two separate chapters.