Condensed Matter Physics in the Prime of 21st Century


Book Description

This is a collection of lectures by 11 active researchers, renowned specialists in a number of modern, promising, dynamically-developing research directions in condensed matter/solid state theory. The lectures are concerned with phenomena, materials and ideas, discussing theoretical and experimental features, as well as with methods of calculation.Readers will find up-to-date presentations of the methods of carrying out efficient calculations for electronic systems and quantum spin systems, together with applications to describe phenomena and to design new materials. These applications include systems of quantum dots, quantum gates, semiconductor materials for spintronics, and the unusual characteristics of warm dense matter.




More is Different


Book Description

This book presents articles written by leading experts surveying several major subfields in Condensed Matter Physics and related sciences. The articles are based on invited talks presented at a recent conference honoring Nobel laureate Philip W. Anderson of Princeton University, who coined the phrase "More is different" while formulating his contention that all fields of physics, indeed all of science, involve equally fundamental insights. The articles introduce and survey current research in areas that have been close to Anderson's interests. Together, they illustrate both the deep impact that Anderson has had in this multifaceted field during the past half century and the progress spawned by his insights. The contributors cover numerous topics under the umbrellas of superconductivity, superfluidity, magnetism, electron localization, strongly interacting electronic systems, heavy fermions, and disorder and frustration in glass and spin-glass systems. They also describe interdisciplinary areas such as the science of olfaction and color vision, the screening of macroions in electrolytes, scaling and renormalization in cosmology, forest fires and the spread of measles, and the investigation of "NP-complete" problems in computer science. The articles are authored by Philip W. Anderson, Per Bak and Kan Chen, G. Baskaran, Juan Carlos Campuzano, Paul Chaikin, John Hopfield, Bernhard Keimer, Scott Kirkpatrick and Bart Selman, Gabriel Kotliar, Patrick Lee, Yoshiteru Maeno, Marc Mezard, Douglas Osheroff et al., H. R. Ott, L. Pietronero et al., T. V. Ramakrishnan, A. Ramirez, Myriam Sarachik, T. Senthil and Matthew P. A. Fisher, B. I. Shklovskii et al., and F. Steglich et al.




Condensed Matter Field Theory


Book Description

This primer is aimed at elevating graduate students of condensed matter theory to a level where they can engage in independent research. Topics covered include second quantisation, path and functional field integration, mean-field theory and collective phenomena.




Quantum Field Theory of Many-Body Systems


Book Description

For most of the last century, condensed matter physics has been dominated by band theory and Landau's symmetry breaking theory. In the last twenty years, however, there has been the emergence of a new paradigm associated with fractionalisation, topological order, emergent gauge bosons and fermions, and string condensation. These new physical concepts are so fundamental that they may even influence our understanding of the origin of light and fermions in the universe. This book is a pedagogical and systematic introduction to the new concepts and quantum field theoretical methods (which have fuelled the rapid developments) in condensed matter physics. It discusses many basic notions in theoretical physics which underlie physical phenomena in nature. Topics covered are dissipative quantum systems, boson condensation, symmetry breaking and gapless excitations, phase transitions, Fermi liquids, spin density wave states, Fermi and fractional statistics, quantum Hall effects, topological and quantum order, spin liquids, and string condensation. Methods covered are the path integral, Green's functions, mean-field theory, effective theory, renormalization group, bosonization in one- and higher dimensions, non-linear sigma-model, quantum gauge theory, dualities, slave-boson theory, and exactly soluble models beyond one-dimension. This book is aimed at teaching graduate students and bringing them to the frontiers of research in condensed matter physics.




Condensed-Matter and Materials Physics


Book Description

The development of transistors, the integrated circuit, liquid-crystal displays, and even DVD players can be traced back to fundamental research pioneered in the field of condensed-matter and materials physics (CMPP). The United States has been a leader in the field, but that status is now in jeopardy. Condensed-Matter and Materials Physics, part of the Physics 2010 decadal survey project, assesses the present state of the field in the United States, examines possible directions for the 21st century, offers a set of scientific challenges for American researchers to tackle, and makes recommendations for effective spending of federal funds. This book maintains that the field of CMPP is certain to be principle to both scientific and economic advances over the next decade and the lack of an achievable plan would leave the United States behind. This book's discussion of the intellectual and technological challenges of the coming decade centers around six grand challenges concerning energy demand, the physics of life, information technology, nanotechnology, complex phenomena, and behavior far from equilibrium. Policy makers, university administrators, industry research and development executives dependent upon developments in CMPP, and scientists working in the field will find this book of interest.




Holographic Duality in Condensed Matter Physics


Book Description

A pioneering treatise presenting how the mathematical techniques of holographic duality can unify the fundamental theories of physics.




Condensed Matter in a Nutshell


Book Description

An introduction to the area of condensed matter in a nutshell. This textbook covers the standard topics, including crystal structures, energy bands, phonons, optical properties, ferroelectricity, superconductivity, and magnetism.




Introduction to Nonlinear Optical Effects in Molecules and Polymers


Book Description

Molecular Dynamics in Restricted Geometries Edited by Joseph Klafter and J. M. Drake This investigation of the chemistry and physics of complex systems focuses on the role of spatial restrictions on molecular movement. A practical source-book for researchers in chemical physics, chemical engineering, and condensed matter physics, and for graduate students in these fields, it covers a broad range of topics and critically evaluates methods as they are employed. Among the many topics it covers are: relaxation and diffusion in restricted geometries, excitation energy transfer and photoinduced electron transfer phenomena in some confined systems, electron excitation transport in micelles, polymers and multilayers, and electron excitation transport on polymer chains. 1989 (0 471-60176-4) 437 pp.




Soft Matter Physics


Book Description

The study of "soft matter" materials with complex properties has raised a number of interesting problems in basic physics, biology, and materials science, all of which promise new and important technological applications. After a review of chemical bonds and phase transitions, the authors treat topics such as surface phenomena, stability of colloidal systems, structural properties of polymers, and topological defects. The monograph's emphasis on underlying physical principles offers a coherent treatment of the great variety of research in the field.