Confined Electrons and Photons


Book Description

The optical properties of semiconductors have played an important role since the identification of semiconductors as "small" bandgap materials in the thinies, due both to their fundamental interest as a class of solids baving specific optical propenies and to their many important applications. On the former aspect we can cite the fundamental edge absorption and its assignment to direct or indirect transitions, many-body effects as revealed by exciton formation and photoconductivity. On the latter aspect, large-scale applications sucb as LEDs and lasers, photovoltaic converters, photodetectors, electro-optics and non-linear optic devices, come to mind. The eighties saw a revitalization of the whole field due to the advent of heterostructures of lower-dimensionality, mainly two-dimensional quantum wells, which through their enhanced photon-matter interaction yielded new devices with unsurpassed performance. Although many of the basic phenomena were evidenced through the seventies, it was this impact on applications which in turn led to such a massive investment in fabrication tools, thanks to which many new structures and materials were studied, yielding funher advances in fundamental physics.




Electron and Photon Confinement in Semiconductor Nanostructures


Book Description

The purpose of this course was to give an overview of the physics of artificial semiconductor structures confining electrons and photons. It furnishes the background for several applications in particular in the domain of optical devices, lasers, light emitting diodes or photonic crystals. The effects related to the microactivity polaritons, which are mixed electromagnetic radiation-exciton states inside a semiconconductor microactivity are covered. The study of the characteristics of such states shows strong relations with the domain of cavity quantum electrodynamics and thus with the investigation of some fundamental theoretical concepts.




Nanophotonics


Book Description

The only comprehensive treatment of nanophotonics currently available Photonics is an all-encompassing optical science and technology which has impacted a diverse range of fields, from information technology to health care. Nanophotonics is photonic science and technology that utilizes light-matter interactions on the nanoscale, where researchers are discovering new phenomena and developing technologies that go well beyond what is possible with conventional photonics and electronics. These new technologies could include efficient solar power generation, high-bandwidth and high-speed communications, high-capacity data storage, and flexible- and high-contrast displays. In addition, nanophotonics will continue to impact biomedical technologies by providing new and powerful diagnostic techniques, as well as light-guided and activated therapies. Nanophotonics provides the only available comprehensive treatment of this exciting, multidisciplinary field, offering a wide range of topics covering: * Foundations * Materials * Applications * Theory * Fabrication Nanophotonics introduces students to important and timely concepts and provides scientists and engineers with a cutting-edge reference. The book is intended for anyone who wishes to learn about light-matter interactions on the nanoscale, as well as applications of photonics for nanotechnology and nanobiotechnology. Written by an acknowledged leader in the field, this text provides an essential resource for those interested in the future of materials science and engineering, nanotechnology, and photonics.




Quantum Optics


Book Description

Written primarily for advanced undergraduate and Master's level students in physics, this text includes a broad range of topics in applied quantum optics such as laser cooling, Bose-Einstein condensation and quantum information processing.




Exploring the Quantum


Book Description

The counter-intuitive aspects of quantum physics have been long illustrated by thought experiments, from Einstein's photon box to Schrödinger's cat. These experiments have now become real, with single particles - electrons, atoms, or photons - directly unveiling the strange features of the quantum. State superpositions, entanglement and complementarity define a novel quantum logic which can be harnessed for information processing, raising great hopes for applications. This book describes a class of such thought experiments made real. Juggling with atoms and photons confined in cavities, ions or cold atoms in traps, is here an incentive to shed a new light on the basic concepts of quantum physics. Measurement processes and decoherence at the quantum-classical boundary are highlighted. This volume, which combines theory and experiments, will be of interest to students in quantum physics, teachers seeking illustrations for their lectures and new problem sets, researchers in quantum optics and quantum information.




Applied Nanophotonics


Book Description

An accessible yet rigorous introduction to nanophotonics, covering basic principles, technology, and applications in lighting, lasers, and photovoltaics. Providing a wealth of information on materials and devices, and over 150 color figures, it is the 'go-to' guide for students in electrical engineering taking courses in nanophotonics.




Photons and Electrons


Book Description




Controlling the Quantum World


Book Description

As part of the Physics 2010 decadal survey project, the Department of Energy and the National Science Foundation requested that the National Research Council assess the opportunities, over roughly the next decade, in atomic, molecular, and optical (AMO) science and technology. In particular, the National Research Council was asked to cover the state of AMO science, emphasizing recent accomplishments and identifying new and compelling scientific questions. Controlling the Quantum World, discusses both the roles and challenges for AMO science in instrumentation; scientific research near absolute zero; development of extremely intense x-ray and laser sources; exploration and control of molecular processes; photonics at the nanoscale level; and development of quantum information technology. This book also offers an assessment of and recommendations about critical issues concerning maintaining U.S. leadership in AMO science and technology.




University Physics


Book Description

University Physics is a three-volume collection that meets the scope and sequence requirements for two- and three-semester calculus-based physics courses. Volume 1 covers mechanics, sound, oscillations, and waves. Volume 2 covers thermodynamics, electricity and magnetism, and Volume 3 covers optics and modern physics. This textbook emphasizes connections between between theory and application, making physics concepts interesting and accessible to students while maintaining the mathematical rigor inherent in the subject. Frequent, strong examples focus on how to approach a problem, how to work with the equations, and how to check and generalize the result. The text and images in this textbook are grayscale.




Mesoscopic Physics of Electrons and Photons


Book Description

Quantum mesoscopic physics covers a whole class in interference effects related to the propagation of waves in complex and random media. These effects are ubiquitous in physics, from the behaviour of electrons in metals and semiconductors to the propagation of electromagnetic waves in suspensions such as colloids, and quantum systems like cold atomic gases. A solid introduction to quantum mesoscopic physics, this book is a modern account of the problem of coherent wave propagation in random media. It provides a unified account of the basic theoretical tools and methods, highlighting the common aspects of the various optical and electronic phenomena involved and presenting a large number of experimental results. With over 200 figures, and exercises throughout, the book was originally published in 2007 and is ideal for graduate students in physics, electrical engineering, applied physics, acoustics and astrophysics. It will also be an interesting reference for researchers.