Conformational Proteomics Of Macromolecular Architecture: Approaching The Structure Of Large Molecular Assemblies And Their Mechanisms Of Action (With Cd-rom)


Book Description

Biological processes involving large macromolecular assemblies are thought to be a dynamic consequence of cooperativity and metastability. The folding of a peptide chain creates local environments from which “activity” can emerge. In the same way, the assembly of large molecular complexes creates dynamic features that would only be feasible in a large construct. The biological implications of such adaptation are explored as it applies to the static quasisymmetry situations, as well as to the dynamics of structural transitions. The current wealth of solved high-resolution complex structures makes this an appropriate time to summarize the state of the art in structural dynamics of living architectures. With contributions by leading scientists in the fields of virology, bacterial flagellum, cytoskeleton, ribosome and giant enzymes, this important book presents cutting-edge knowledge in the various fields of structural proteomics of very large molecular assemblies, with the focus on their mechanisms of action.




Conformational Proteomics of Macromolecular Architecture


Book Description

Biological processes involving large macromolecular assemblies are thought to be a dynamic consequence of cooperativity and metastability. The folding of a peptide chain creates local environments from which "activity" can emerge. In the same way, the assembly of large molecular complexes creates dynamic features that would only be feasible in a large construct. The biological implications of such adaptation are explored as it applies to the static quasisymmetry situations, as well as to the dynamics of structural transitions. The current wealth of solved high-resolution complex structures makes this an appropriate time to summarize the state of the art in structural dynamics of living architectures. With contributions by leading scientists in the fields of virology, bacterial flagellum, cytoskeleton, ribosome and giant enzymes, this important book presents cutting-edge knowledge in the various fields of structural proteomics of very large molecular assemblies, with the focus on their mechanisms of action.










Macromolecular Protein Complexes III: Structure and Function


Book Description

This book covers important topics such as the dynamic structure and function of the 26S proteasome, the DNA replication machine: structure and dynamic function and the structural organization and protein–protein interactions in the human adenovirus capsid, to mention but a few. The 18 chapters included here, written by experts in their specific field, are at the forefront of scientific knowledge. The impressive integration of structural data from X-ray crystallography with that from cryo-electron microscopy is apparent throughout the book. In addition, functional aspects are also given a high priority. Chapter 1 is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.




Membrane Protein Crystallization


Book Description

This volume of Current Topics in Membranes focuses on Membrane Protein Crystallization, beginning with a review of past successes and general trends, then further discussing challenges of mebranes protein crystallization, cell free production of membrane proteins and novel lipids for membrane protein crystallization. This publication also includes tools to enchance membrane protein crystallization, technique advancements, and crystallization strategies used for photosystem I and its complexes, establishing Membrane Protein Crystallization as a needed, practical reference for researchers.




Spinach On The Ceiling: The Multifaceted Life Of A Theoretical Chemist


Book Description

'Karplus's tales of a turbulent graduate school experience at Caltech will inspire readers to muster fortitude when everything seems to be spinning out of control. Karplus balances rigorous scientific discussions with refreshing chapters expounding his passion for photography and gastronomy.'Nature Chemistry, May 2020Nobel Laureate Martin Karplus was eight when his family fled Nazi-occupied Austria via Switzerland and France for the United States. He would later credit his life as a refugee as a decisive influence on his world view and approach to science.Spinach on the Ceiling is an autobiographical telling of Karplus' life story, and how it led him to win the Nobel Prize in Chemistry in 2013. The book captures pivotal moments in Martin's life — from his escape to Switzerland in 1938 shortly after Hitler's entrance into Austria; to memorable moments like when his parents gave him a microscope which opened his eyes to the wonders of science; to his education in New England and California; and his eventual scientific career which took him to England, Illinois, Columbia, Strasbourg, and Harvard. It relates how Martin's optimistic outlook and belief in his vision made it possible for him to overcome setbacks in his life, and turn a subject of study his colleagues considered a waste of time into a central part of chemistry and structural biology. It is his hope to inspire and aid young readers, in particular, to have a successful trajectory in their own lives. Although research and teaching have been his primary focus, he has traveled the world photographing people and places with a Leica IIIC and has had numerous exhibitions of the photographs. He has also enjoyed a lifelong interest in cooking and worked in some of the best restaurants in France and Spain.




Outline of Crystallography for Biologists


Book Description

X-ray crystallography is the main method used to determine the structure of biological molecules. X-ray crystallography is explained without maths and reading this text allows biologists to assess the quality and accuracy of biological structures.




Protein Self-Assembly


Book Description

This volume explores experimental and computational approaches to measuring the most widely studied protein assemblies, including condensed liquid phases, aggregates, and crystals. The chapters in this book are organized into three parts: Part One looks at the techniques used to measure protein-protein interactions and equilibrium protein phases in dilute and concentrated protein solutions; Part Two describes methods to measure kinetics of aggregation and to characterize the assembled state; and Part Three details several different computational approaches that are currently used to help researchers understand protein self-assembly. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Thorough and cutting-edge, Protein Self-Assembly: Methods and Protocols is a valuable resource for researchers who are interested in learning more about this developing field.




Crystallography Made Crystal Clear


Book Description

Crystallography Made Crystal Clear is designed to meet the need for an X-ray analysis that is between brief textbook sections and complete treatments. The book provides non-crystallographers with an intellectually satisfying explanation of the principles of how protein models are gleaned from X-ray analysis. The understanding of these concepts will foster wise use of the models, including the recognition of the strengths and weaknesses of pictures or computer graphics. Since proteins comprise the majority of the mass of macromolecules in cells and carry out biologically important tasks, the book will be of interest to biologists.Provides accessible descriptions of principles of x-ray crystallography, built on simple foundations for anyone with a basic science backgroundLeads the reader through clear, thorough, unintimidating explanations of the mathematics behind crystallographyExplains how to read crystallography papers in research journalsIf you use computer-generated models of proteins or nucleic acids for:Studying molecular interactionsDesigning ligands, inhibitors, or drugsEngineering new protein functionsInterpreting chemical, kinetic, thermodynamic, or spectroscopic dataStudying protein foldingTeaching macromolecule structure,and if you want to read new structure papers intelligently; become a wiser user of macromolecular models; and want to introduce undergraduates to the important subject of x-ray crystallography, then this book is for you.