Conjugate Problems in Convective Heat Transfer


Book Description

Illustrates Calculations Using Machine and Technological Processes The conjugate heat transfer (CHT) problem addresses the thermal interaction between a body and fluid flowing over or through it. This is an essential consideration in nature and different areas of engineering, including mechanics, aerospace, nuclear engineering, biology, and meteorology. Advanced conjugate modeling of the heat transfer process is now used extensively in a wide range of applications. Conjugate Problems in Convective Heat Transfer addresses the latest theory, methods, and applications associated with both analytical and numerical methods of solution CHT problems and their exact and approximate solutions. It demonstrates how the true value of a CHT solution is derived by applying these solutions to contemporary engineering design analysis. Assembling cutting-edge information on modern modeling from more than 200 publications, this book presents more than 100 example applications in thermal treatment materials, machinery operation, and technological processes. Creating a practical review of current CHT development, the author includes methods associated with estimating heat transfer, particularly that from arbitrary non-isothermal surfaces in both laminar and turbulent flows. Harnesses the Modeling Power of CHT Unique in its consistent compilation and application of current knowledge, this book presents advanced CHT analysis as a powerful tool for modeling various device operations and technological processes, from relatively simple procedures to complex multistage, nonlinear processes.




Conjugate Heat and Mass Transfer in Heat Mass Exchanger Ducts


Book Description

Conjugate Heat and Mass Transfer in Heat Mass Exchanger Ducts bridges the gap between fundamentals and recent discoveries, making it a valuable tool for anyone looking to expand their knowledge of heat exchangers. The first book on the market to cover conjugate heat and mass transfer in heat exchangers, author Li-Zhi Zhang goes beyond the basics to cover recent advancements in equipment for energy use and environmental control (such as heat and moisture recovery ventilators, hollow fiber membrane modules for humidification/dehumidification, membrane modules for air purification, desiccant wheels for air dehumidification and energy recovery, and honeycomb desiccant beds for heat and moisture control). Explaining the data behind and the applications of conjugated heat and mass transfer allows for the design, analysis, and optimization of heat and mass exchangers. Combining this recently discovered data into one source makes it an invaluable reference for professionals, academics, and other interested parties. - A research-based approach emphasizing numerical methods in heat mass transfer - Introduces basic data for exchangers' design (such as friction factors and the Nusselt/Sherwood numbers), methods to solve conjugated problems, the modeling of various heat and mass exchangers, and more - The first book to include recently discovered advancements of mass transfer and fluid flow in channels comprised of new materials - Includes illustrations to visually depict the book's key concepts




Applications of Mathematical Heat Transfer and Fluid Flow Models in Engineering and Medicine


Book Description

Applications of mathematical heat transfer and fluid flow models in engineering and medicine Abram S. Dorfman, University of Michigan, USA Engineering and medical applications of cutting-edge heat and flow models This book presents innovative efficient methods in fluid flow and heat transfer developed and widely used over the last fifty years. The analysis is focused on mathematical models which are an essential part of any research effort as they demonstrate the validity of the results obtained. The universality of mathematics allows consideration of engineering and biological problems from one point of view using similar models. In this book, the current situation of applications of modern mathematical models is outlined in three parts. Part I offers in depth coverage of the applications of contemporary conjugate heat transfer models in various industrial and technological processes, from aerospace and nuclear reactors to drying and food processing. In Part II the theory and application of two recently developed models in fluid flow are considered: the similar conjugate model for simulation of biological systems, including flows in human organs, and applications of the latest developments in turbulence simulation by direct solution of Navier-Stokes equations, including flows around aircraft. Part III proposes fundamentals of laminar and turbulent flows and applied mathematics methods. The discussion is complimented by 365 examples selected from a list of 448 cited papers, 239 exercises and 136 commentaries. Key features: Peristaltic flows in normal and pathologic human organs. Modeling flows around aircraft at high Reynolds numbers. Special mathematical exercises allow the reader to complete expressions derivation following directions from the text. Procedure for preliminary choice between conjugate and common simple methods for particular problem solutions. Criterions of conjugation, definition of semi-conjugate solutions. This book is an ideal reference for graduate and post-graduate students and engineers.




Advances in Heat Transfer


Book Description

Advances in Heat Transfer is designed to fill the information gap between regularly scheduled journals and university level textbooks by providing in-depth review articles over a broader scope than is allowablein either journals or texts.




The Art of Measuring in the Thermal Sciences


Book Description

The Art of Measuring in the Thermal Sciences provides an original state-of-the-art guide to scholars who are conducting thermal experiments in both academia and industry. Applications include energy generation, transport, manufacturing, mining, processes, HVAC&R, etc. This book presents original insights into advanced measurement techniques and systems, explores the fundamentals, and focuses on the analysis and design of thermal systems. Discusses the advanced measurement techniques now used in thermal systems Links measurement techniques to concepts in thermal science and engineering Draws upon the original work of current researchers and experts in thermal-fluid measurement Includes coverage of new technologies, such as micro-level heat transfer measurements Covers the main types of instrumentation and software used in thermal-fluid measurements This book offers engineers, researchers, and graduate students an overview of the best practices for conducting sound measurements in the thermal sciences.




Air Cooling Technology for Electronic Equipment


Book Description

Clear your bookcase of references containing bits and pieces of useful information and replace them with this thorough, single-volume guide to thermal analysis. Air Cooling Technology for Electronic Equipment is a helpful, practical resource that answers questions frequently asked by thermal and packaging engineers grappling with today's demand for increased thermal control in electronics. Superbly organized for quick reference, the book dedicates each chapter to answering fundamental questions, such as: What is the optimal spacing between the printed circuit boards? What is a good estimate of the heat transfer coefficient and the associate pressure drop for forced convection over package arrays? How are heat transfer and fluid flow characteristics in the entrance region different from those in the fully developed region? What is the effect of substrate conduction on convection cooling? The chapters, written by engineers and engineering educators who are experts in electronic cooling, are packed with details and present the latest developments in air cooling techniques and thermal design guidelines. They provide problem-solving analyses that are jargon-free, straightforward, and easy to understand. Air Cooling Technology for Electronic Equipment is a handy source of technical information for anyone who wants to get the most out of air cooling.




Annual Research Briefs ...


Book Description




Advances in Evolutionary and Deterministic Methods for Design, Optimization and Control in Engineering and Sciences


Book Description

This book presents improved and extended versions of selected papers from EUROGEN 2019, a conference with interest on developing or applying evolutionary and deterministic methods in optimization of design and emphasizing on industrial and societal applications.







Thermal Measurements in Electronics Cooling


Book Description

Filled with careful explanations, step-by-step instructions, and useful examples, this handbook focuses on real-world considerations and applications of thermal measurement methods in electronics cooling. Fifteen experts in thermal engineering combine their expertise to create a complete guide to this complex topic. This practical reference covers all aspects of thermal characterization in electronics cooling and thermal management. The first part of the book introduces the concept of electronics cooling and its associated thermal phenomenon and explains why experimental investigation is required. Subsequent chapters explain methods of measuring different parameters and introduce relevant examples. Sources for locating needed equipment, tables, checklists, and to-do lists are included. Sample calculations and methodologies for error analysis ensure that you can put this valuable information to use in your work.