Contemporary Enzyme Kinetics and Mechanism


Book Description

Kinetic studies of enzyme action provide powerful insights into the underlying mechanisms of catalysis and regulation. These approaches are equally useful in examining the action of newly discovered enzymes and therapeutic agents. Contemporary Enzyme Kinetics and Mechanism, Second Edition presents key articles from Volumes 63, 64, 87, 249, 308 and 354 of Methods in Enzymology. The chapters describe the most essential and widely applied strategies. A set of exercises and problems is included to facilitate mastery of these topics. The book will aid the reader to design, execute, and analyze kinetic experiments on enzymes. Its emphasis on enzyme inhibition will also make it attractive to pharmacologists and pharmaceutical chemists interested in rational drug design.Of the seventeen chapters presented in this new edition, ten did not previously appear in the first edition. - Transient kinetic approaches to enzyme mechanisms - Designing initial rate enzyme assay - Deriving initial velocity and isotope exchange rate equations - Plotting and statistical methods for analyzing rate data - Cooperativity in enzyme function - Reversible enzyme inhibitors as mechanistic probes - Transition-state and multisubstrate inhibitors - Affinity labeling to probe enzyme structure and function - Mechanism-based enzyme inactivators - Isotope exchange methods for elucidating enzymatic catalysis - Kinetic isotope effects in enzyme catalysis - Site-directed mutagenesis in studies of enzyme catalysis




Contemporary Enzyme Kinetics and Mechanism


Book Description

Selected Methods in Enzymology: Contemporary Enzyme Kinetics and Mechanism provides an introduction to enzyme kinetics and mechanism at an intermediate level. This book covers a variety of topics, including temperature effects in enzyme kinetics, cryoenzymology, substrate inhibition, enol intermediates enzymology, and heavy-atom isotope effects. Organized into 19 chapters, this book begins with an overview of derivation of rate equations as an integral part of the effective usage of kinetics as a tool. This text then examines the practical aspects of initial rate enzyme assay. Other chapters consider the basic procedures used in making decisions concerning kinetic mechanisms from initial-rate data. This book discusses as well the various aspects of both the theoretical background and the applications. The final chapter deals with the importance of achieving proficiency in formulating quantitative relationships describing enzyme behavior. This book is a valuable resource for students and research workers. Enzymologists and chemists will also find this book useful.




Enzyme Kinetics and Mechanism


Book Description

Enzyme Kinetics and Mechanism is a comprehensive textbook on steady-state enzyme kinetics. Organized according to the experimental process, the text covers kinetic mechanism, relative rates of steps along the reaction pathway, and chemical mechanism—including acid-base chemistry and transition state structure. Practical examples taken from the literature demonstrate theory throughout. The book also features numerous general experimental protocols and how-to explanations for interpreting kinetic data. Written in clear, accessible language, the book will enable graduate students well-versed in biochemistry to understand and describe data at the fundamental level. Enzymologists and molecular biologists will find the text a useful reference.




Enzyme Kinetics: Catalysis and Control


Book Description

Far more than a comprehensive treatise on initial-rate and fast-reaction kinetics, this one-of-a-kind desk reference places enzyme science in the fuller context of the organic, inorganic, and physical chemical processes occurring within enzyme active sites. Drawing on 2600 references, Enzyme Kinetics: Catalysis & Control develops all the kinetic tools needed to define enzyme catalysis, spanning the entire spectrum (from the basics of chemical kinetics and practical advice on rate measurement, to the very latest work on single-molecule kinetics and mechanoenzyme force generation), while also focusing on the persuasive power of kinetic isotope effects, the design of high-potency drugs, and the behavior of regulatory enzymes. - Historical analysis of kinetic principles including advanced enzyme science - Provides both theoretical and practical measurements tools - Coverage of single molecular kinetics - Examination of force generation mechanisms - Discussion of organic and inorganic enzyme reactions




Fundamentals of Enzyme Kinetics


Book Description

Fundamentals of Enzyme Kinetics details the rate of reactions catalyzed by different enzymes and the effects of varying the conditions on them. The book includes the basic principles of chemical kinetics, especially the order of a reaction and its rate constraints. The text also gives an introduction to enzyme kinetics - the idea of an enzyme-substrate complex; the Michaelis-Menten equation; the steady state treatment; and the validity of its assumption. Practical considerations, the derivation of steady-state rate equations, inhibitors and activators, and two-substrate reactions are also explained. Problems after the end of each chapter have also been added, as well as their solutions at the end of the book, to test the readers' learning. The text is highly recommended for undergraduate students in biochemistry who wish to study about enzymes or focus completely on enzymology, as most of the mathematics used in this book, which have been explained in detail to remove most barriers of understanding, is elementary.




Initial Rate Enzyme Kinetics


Book Description

Enzyme kinetics has undergone very rapid growth and development during the past fifteen years and has been well received by the biochemical community. A cursory glance at the current biochem ical literature reveals the increasing popularity of enzyme ki netics1 yet, there are very few books available to guide the enzymologist who wishes to conduct kinetic experiments. This monograph was undertaken to provide the fledgling kineticist with an outline of contemporary initial rate enzyme kinetics. A large portion of the material contained in this book is presented in a second-year, graduate-level course in biochemistry at Iowa State University. I have found that the presentation in this course has enabled students without a strong background in math ematics to undertake initial rate studies at the research bench. The monograph obviously is more comprehensive than any course could be, and should permit similar accomplishment. As the title implies, the major emphasis of this monograph is on initial rate enzyme kinetics. I considered at length the advis ability of including chapters on integrated rate equations and on the theory and application of rapid reaction kinetics, such as rapid-mixing stopped-flow, and temperature-jump kinetics. These, however, are topics that would require a good deal of space to develop if they were to be helpful to the beginner.




Enzymes


Book Description

Fully updated and expanded-a solid foundation for understandingexperimental enzymology. This practical, up-to-date survey is designed for a broadspectrum of biological and chemical scientists who are beginning todelve into modern enzymology. Enzymes, Second Editionexplains the structural complexities of proteins and enzymes andthe mechanisms by which enzymes perform their catalytic functions.The book provides illustrative examples from the contemporaryliterature to guide the reader through concepts and data analysisprocedures. Clear, well-written descriptions simplify the complexmathematical treatment of enzyme kinetic data, and numerouscitations at the end of each chapter enable the reader to accessthe primary literature and more in-depth treatments of specifictopics. This Second Edition of Enzymes: A Practical Introductionto Structure, Mechanism, and Data Analysis features refinedand expanded coverage of many concepts, while retaining theintroductory nature of the book. Important new featuresinclude: A new chapter on protein-ligand binding equilibria Expanded coverage of chemical mechanisms in enzyme catalysisand experimental measurements of enzyme activity Updated and refined discussions of enzyme inhibitors andmultiple substrate reactions Coverage of current practical applications to the study ofenzymology Supplemented with appendices providing contact information forsuppliers of reagents and equipment for enzyme studies, as well asa survey of useful Internet sites and computer software forenzymatic data analysis, Enzymes, Second Edition isthe ultimate practical guide for scientists and students inbiochemical, pharmaceutical, biotechnical, medicinal, andagricultural/food-related research.




Kinetics of Enzyme-Modifier Interactions


Book Description

The kinetic mechanisms by which enzymes interact with inhibitors and activators, collectively called modifiers, are scrutinized and ranked taxonomically into autonomous species in a way similar to that used in the biological classification of plants and animals. The systematization of the mechanisms is based on two fundamental characters: the allosteric linkage between substrate and modifier and the factor by which a modifier affects the catalytic constant of the enzyme. Combinations of the physically significant states of these two characters in an ancestor-descendant-like fashion reveal the existence of seventeen modes of interaction that cover the needs of total, partial and fine-tuning modulation of enzyme activity. These interactions comprise five linear and five hyperbolic inhibition mechanisms, five nonessential activation mechanisms and two hybrid species that manifest either hyperbolic inhibition or nonessential activation characteristics depending on substrate concentration. Five essential activation mechanisms, which are taxonomically independent of the mentioned basic species, complete the inventory of enzyme modifiers. Often masked under conventional umbrella terms or treated as anomalous cases, all seventeen basic inhibition and nonessential activation mechanisms are represented in the biochemical and pharmacological literature of this and the past century, either in the form of rapid or slow-onset reversible interactions, or as irreversible modification processes. The full potential of enzyme inhibitors and activators can only be appreciated after elucidating the details of their kinetic mechanisms of action exploring the entire range of physiologically significant reactant concentrations. This book highlights the wide spectrum of allosteric enzyme modification in physiological occurrences as well as in pharmacological and biotechnological applications that embrace simple and multiple enzyme-modifier interactions. The reader is guided in the journey through this still partly uncharted territory with the aid of mechanistically-oriented criteria aimed at showing the logical way towards the identification of a particular mechanism.




Kinetics of Enzyme Action


Book Description

Few scientists have the knowledge to perform the studies that are necessary to discover and characterize enzyme inhibitors, despite the vested interest the pharmaceutical industry has in this field. Beginning with the most basic principles pertaining to simple, one-substrate enzyme reactions and their inhibitors, and progressing to a thorough treatment of two-substrate enzymes, Kinetics of Enzyme Action: Essential Principles for Drug Hunters provides biochemists, medicinal chemists, and pharmaceutical scientists with numerous case study examples to outline the tools and techniques necessary to perform, understand, and interpret detailed kinetic studies for drug discovery.




Biochemistry


Book Description

The "Gold Standard" in Biochemistry text books, Biochemistry 4e, is a modern classic that has been thoroughly revised. Don and Judy Voet explain biochemical concepts while offering a unified presentation of life and its variation through evolution. Incorporates both classical and current research to illustrate the historical source of much of our biochemical knowledge.




Recent Books