Learning to Communicate in Science and Engineering


Book Description

Case studies and pedagogical strategies to help science and engineering students improve their writing and speaking skills while developing professional identities. To many science and engineering students, the task of writing may seem irrelevant to their future professional careers. At MIT, however, students discover that writing about their technical work is important not only in solving real-world problems but also in developing their professional identities. MIT puts into practice the belief that “engineers who don't write well end up working for engineers who do write well,” requiring all students to take “communications-intensive” classes in which they learn from MIT faculty and writing instructors how to express their ideas in writing and in presentations. Students are challenged not only to think like professional scientists and engineers but also to communicate like them.This book offers in-depth case studies and pedagogical strategies from a range of science and engineering communication-intensive classes at MIT. It traces the progress of seventeen students from diverse backgrounds in seven classes that span five departments. Undergraduates in biology attempt to turn scientific findings into a research article; graduate students learn to define their research for scientific grant writing; undergraduates in biomedical engineering learn to use data as evidence; and students in aeronautic and astronautic engineering learn to communicate collaboratively. Each case study is introduced by a description of its theoretical and curricular context and an outline of the objectives for the students' activities. The studies describe the on-the-ground realities of working with faculty, staff, and students to achieve communication and course goals, offering lessons that can be easily applied to a wide variety of settings and institutions.




A Whole New Engineer: The Coming Revolution in Engineering Education


Book Description

A Revolution Is Coming. It Isn't What You Think.This book tells the improbable stories of Franklin W. Olin College of Engineering, a small startup in Needham, Massachusetts, with aspirations to be a beacon to engineering education everywhere, and the iFoundry incubator at the University of Illinois, an unfunded pilot program with aspirations to change engineering at a large public university that wasn't particularly interested in changing. That either one survived is story enough, but what they found out together changes the course of education transformation forever: - How joy, trust, openness, and connec- tion are the keys to unleashing young, courageous engineers.- How engineers educated in narrow technical terms with a fixed mindset need an education that actively engages six minds-analytical, design, people, linguistic, body, and mindful- using a growth mindset.- How emotion and culture are the crucial elements of change, not content, curriculum, and pedagogy.- How four technologies of trust are well established and widely available to promote more rapid academic change.- How all stakeholders can join together in a movement of open innovation to accelerate collaborative disruption of the status quo.Read this book and get a glimpse inside the coming revolution in engineering. Feel the engaging stories in this book and understand the depth of change that is coming. Use this book to help select, shape, demand, and create educational experiences aligned with the creative imperative of the twenty-first century.







Understanding the Educational and Career Pathways of Engineers


Book Description

Engineering skills and knowledge are foundational to technological innovation and development that drive long-term economic growth and help solve societal challenges. Therefore, to ensure national competitiveness and quality of life it is important to understand and to continuously adapt and improve the educational and career pathways of engineers in the United States. To gather this understanding it is necessary to study the people with the engineering skills and knowledge as well as the evolving system of institutions, policies, markets, people, and other resources that together prepare, deploy, and replenish the nation's engineering workforce. This report explores the characteristics and career choices of engineering graduates, particularly those with a BS or MS degree, who constitute the vast majority of degreed engineers, as well as the characteristics of those with non-engineering degrees who are employed as engineers in the United States. It provides insight into their educational and career pathways and related decision making, the forces that influence their decisions, and the implications for major elements of engineering education-to-workforce pathways.




Continuing Engineering Education Handbook


Book Description

"The book is divided into four sections. Section One includes two chapters on history. The opening chapter of the book introduces the subject of continuing engineering education (CEE). There are general sections on continuing education and engineering education and then the subject of CEE is presented. The chapter concludes with some sources for further information including relevant organizations, journals, and workshops. The second chapter in the section is on the 50-year history of engineering distance education at Iowa State University. A timeline with notable events is presented along with the key people involved in the program. Section Two concerns instructional design and contains five chapters. The first is on the learning preferences of working engineers. It presents the results of a study on the learning strategy and verbal-visual preference of engineers working in the oil and gas industry. Section Three focuses on CEE delivery and administration. The first chapter in the section discusses the results of a survey of working engineers to determine their CEE practices and preferences. It includes results such as how many courses engineers take each year, what types of courses they take (technical; management; environment, health, and safety; legal; and other), what fraction of the course is mandatory including what fraction is required by the participant's organization and by outside organizations, the fraction of courses taken that are taken for credit, and how many courses are taken after normal working hours. Finally, section four discusses sustainability in continuing engineering education--







A New Vision for Center-Based Engineering Research


Book Description

The future security, economic growth, and competitiveness of the United States depend on its capacity to innovate. Major sources of innovative capacity are the new knowledge and trained students generated by U.S. research universities. However, many of the complex technical and societal problems the United States faces cannot be addressed by the traditional model of individual university research groups headed by a single principal investigator. Instead, they can only be solved if researchers from multiple institutions and with diverse expertise combine their efforts. The National Science Foundation (NSF), among other federal agencies, began to explore the potential of such center-scale research programs in the 1970s and 1980s; in many ways, the NSF Engineering Research Center (ERC) program is its flagship program in this regard. The ERCs are "interdisciplinary, multi-institutional centers that join academia, industry, and government in partnership to produce transformational engineered systems and engineering graduates who are adept at innovation and primed for leadership in the global economy. To ensure that the ERCs continue to be a source of innovation, economic development, and educational excellence, A New Vision for Center-Based Engineering Research explores the future of center-based engineering research, the skills needed for effective center leadership, and opportunities to enhance engineering education through the centers.