Control of Underactuated Manipulators


Book Description

This book investigates in detail cutting-edge technologies of underactuated manipulator control, which is a frontier topic in robotics that possesses great significance in energy conservation as well as fault tolerance for industrial applications. It is also the crucial technology associated with systems in special environments, including underwater or aerospace environments. So far, the topic of underactuated manipulator control has attracted engineers and scientists from various disciplines, such as applied physics, material, automation and robotics. Pursuing a holistic approach, the book establishes a fundamental framework for this topic, while emphasizing the importance of design and optimization in the control of underactuated manipulators. Chapters of the book cover a wide variety of manipulator systems, including vertical underactuated manipulator, planar underactuated manipulator with first-order nonholonomic constraint, planar underactuated manipulator with second-order nonholonomic constraint and flexible underactuated manipulator. The book is intended for undergraduate and graduate students that are interested in underactuated manipulators, researchers that investigate the design and optimization for controllers of underactuated manipulators and engineers working with underactuated systems.




Dynamics of Underactuated Multibody Systems


Book Description

Underactuated multibody systems are intriguing mechatronic systems, as they posses fewer control inputs than degrees of freedom. Some examples are modern light-weight flexible robots and articulated manipulators with passive joints. This book investigates such underactuated multibody systems from an integrated perspective. This includes all major steps from the modeling of rigid and flexible multibody systems, through nonlinear control theory, to optimal system design. The underlying theories and techniques from these different fields are presented using a self-contained and unified approach and notation system. Subsequently, the book focuses on applications to large multibody systems with multiple degrees of freedom, which require a combination of symbolical and numerical procedures. Finally, an integrated, optimization-based design procedure is proposed, whereby both structural and control design are considered concurrently. Each chapter is supplemented by illustrated examples.




Adaptive Control of Robot Manipulators


Book Description

This book introduces an unified function approximation approach to the control of uncertain robot manipulators containing general uncertainties. It works for free space tracking control as well as compliant motion control. It is applicable to the rigid robot and the flexible joint robot. Even with actuator dynamics, the unified approach is still feasible. All these features make the book stand out from other existing publications.







Robust Control of Robots


Book Description

Robust Control of Robots bridges the gap between robust control theory and applications, with a special focus on robotic manipulators. It is divided into three parts: robust control of regular, fully-actuated robotic manipulators; robust post-failure control of robotic manipulators; and robust control of cooperative robotic manipulators. In each chapter the mathematical concepts are illustrated with experimental results obtained with a two-manipulator system. They are presented in enough detail to allow readers to implement the concepts in their own systems, or in Control Environment for Robots, a MATLAB®-based simulation program freely available from the authors. The target audience for Robust Control of Robots includes researchers, practicing engineers, and graduate students interested in implementing robust and fault tolerant control methodologies to robotic manipulators.




Motion Control of Underactuated Mechanical Systems


Book Description

This volume is the first to present a unified perspective on the control of underactuated mechanical systems. Based on real-time implementation of parameter identification, this book provides a variety of algorithms for the Furuta pendulum and the inertia wheel pendulum, which are two-degrees-of-freedom mechanical systems. Specifically, this work addresses and solves the problem of motion control via trajectory tracking in one joint coordinate while another joint is regulated. Besides, discussions on extensions to higher degrees-of-freedom systems are given. The book, aimed at control engineers as well as graduate students, ranges from the problem of parameter identification of the studied systems to the practical implementation of sophisticated motion control algorithms. Offering real-world solutions to manage the control of underactuated systems, this book provides a concise tutorial on recent breakthroughs in the field, original procedures to achieve bounding of the error trajectories, convergence and gain tuning guidelines.




Underwater Vehicles


Book Description

For the latest twenty to thirty years, a significant number of AUVs has been created for the solving of wide spectrum of scientific and applied tasks of ocean development and research. For the short time period the AUVs have shown the efficiency at performance of complex search and inspection works and opened a number of new important applications. Initially the information about AUVs had mainly review-advertising character but now more attention is paid to practical achievements, problems and systems technologies. AUVs are losing their prototype status and have become a fully operational, reliable and effective tool and modern multi-purpose AUVs represent the new class of underwater robotic objects with inherent tasks and practical applications, particular features of technology, systems structure and functional properties.




Robotics Research


Book Description

This book is the proceedings of the 9th International Symposium of Robotics Research, one of the oldest and most prestigious conferences in robotics. The goal of the symposium was to bring together active, leading robotics researchers from academia, government and industry, to define the state of the art of robotics and its future direction. The broad spectrum of robotics research is covered, with an eye on what will be important in robotics in the next millennium.




NASA Tech Briefs


Book Description