Coronal Magnetometry


Book Description

Magnetism defines the complex and dynamic solar corona. It determines the magnetic loop structure that dominates images of the corona, and stores the energy necessary to drive coronal eruptive phenomena and flare explosions. At great heights the corona transitions into the ever-outflowing solar wind, whose speed and three-dimensional morphology are controlled by the global coronal magnetic field. Coronal magnetism is thus at the heart of any understanding of the nature of the corona, and essential for predictive capability of how the Sun affects the Earth. Coronal magnetometry is a subject that requires a concerted effort to draw together the different strands of research happening around the world. Each method provides some information about the field, but none of them can be used to determine the full 3D field structure in the full volume of the corona. Thus, we need to combine them to understand the full picture. The purpose of this Frontiers Research Topic on Coronal Magnetometry is to provide a forum for comparing and coordinating these research methods, and for discussing future opportunities.




Coronal Magnetometry


Book Description

Captures advances being made in the field of coronal magnetism, from theory to observations and instrumentation. This volume is a collection of research articles on the subject of the solar corona, and particularly, coronal magnetism. The book was motivated by the Workshop on Coronal Magnetism: Connecting Models to Data and the Corona to the Earth, which was held 21 - 23 May 2012 in Boulder, Colorado, USA. This workshop was attended by approximately 60 researchers. Articles from this meeting are contained in this topical issue, but the topical issue also contains contributions from researchers not present at the workshop. This volume is aimed at researchers and graduate students active in solar physics. Originally published in Solar Physics, Vol. 288, Issue 2, 2013 and Vol. 289, Issue 8, 2014.




Coronal Magnetometry


Book Description




Machine Learning in Heliophysics


Book Description




New Millennium Solar Physics


Book Description

This is a follow-on book to the introductory textbook "Physics of the Solar Corona" previously published in 2004 by the same author, which provided a systematic introduction and covered mostly scientific results from the pre-2000 era. Using a similar structure as the previous book the second volume provides a seamless continuation of numerous novel research results in solar physics that emerged in the new millennium (after 2000) from the new solar missions of RHESSI, STEREO, Hinode, CORONAS, and the Solar Dynamics Observatory (SDO) during the era of 2000-2018. The new solar space missions are characterized by unprecedented high-resolution imaging, time resolution, spectral capabilities, stereoscopy and tomography, which reveal the intricate dynamics of magneto-hydrodynamic processes in the solar corona down to scales of 100 km. The enormous amount of data streaming down from SDO in Terabytes per day requires advanced automated data processing methods. The book focuses exclusively on new research results after 2000, which are reviewed in a comprehensive manner, documented by over 3600 literature references, covering theory, observations, and numerical modeling of basic physical processes that are observed in high-temperature plasmas of the Sun and other astrophysical objects, such as plasma instabilities, coronal heating, magnetic reconnection processes, coronal mass ejections, plasma waves and oscillations, or particle acceleration.




Panel Reportsâ¬"New Worlds, New Horizons in Astronomy and Astrophysics


Book Description

Every 10 years the National Research Council releases a survey of astronomy and astrophysics outlining priorities for the coming decade. The most recent survey, titled New Worlds, New Horizons in Astronomy and Astrophysics, provides overall priorities and recommendations for the field as a whole based on a broad and comprehensive examination of scientific opportunities, infrastructure, and organization in a national and international context. Panel Reportsâ€"New Worlds, New Horizons in Astronomy and Astrophysics is a collection of reports, each of which addresses a key sub-area of the field, prepared by specialists in that subarea, and each of which played an important role in setting overall priorities for the field. The collection, published in a single volume, includes the reports of the following panels: Cosmology and Fundamental Physics Galaxies Across Cosmic Time The Galactic Neighborhood Stars and Stellar Evolution Planetary Systems and Star Formation Electromagnetic Observations from Space Optical and Infrared Astronomy from the Ground Particle Astrophysics and Gravitation Radio, Millimeter, and Submillimeter Astronomy from the Ground The Committee for a Decadal Survey of Astronomy and Astrophysics synthesized these reports in the preparation of its prioritized recommendations for the field as a whole. These reports provide additional depth and detail in each of their respective areas. Taken together, they form an essential companion volume to New Worlds, New Horizons: A Decadal Survey of Astronomy and Astrophysics. The book of panel reports will be useful to managers of programs of research in the field of astronomy and astrophysics, the Congressional committees with jurisdiction over the agencies supporting this research, the scientific community, and the public.




Electric Currents in Geospace and Beyond


Book Description

Electric currents are fundamental to the structure and dynamics of space plasmas, including our own near-Earth space environment, or “geospace.”This volume takes an integrated approach to the subject of electric currents by incorporating their phenomenology and physics for many regions in one volume. It covers a broad range of topics from the pioneers of electric currents in outer space, to measurement and analysis techniques, and the many types of electric currents. First volume on electric currents in space in over a decade that provides authoritative up-to-date insight on the current status of research Reviews recent advances in observations, simulation, and theory of electric currents Provides comparative overviews of electric currents in the space environments of different astronomical bodies Electric Currents in Geospace and Beyond serves as an excellent reference volume for a broad community of space scientists, astronomers, and astrophysicists who are studying space plasmas in the solar system. Read an interview with the editors to find out more: https://eos.org/editors-vox/electric-currents-in-outer-space-run-the-show




Solar Prominences


Book Description

This volume presents the latest research results on solar prominences, including new developments on e.g. chirality, fine structure, magnetism, diagnostic tools and relevant solar plasma physics. In 1875 solar prominences, as seen out of the solar limb, were described by P.A. Secchi in his book Le Soleil as "gigantic pink or peach-flower coloured flames". The development of spectroscopy, coronagraphy and polarimetry brought tremendous observational advances in the twentieth century. The authors present and discuss exciting new challenges (resulting from observations made by space and ground-based telescopes in the 1990s and the first decade of the 21st century) concerning the diagnostics of prominences, their formation, their life time and their eruption along with their impact in the heliosphere (including the Earth). The book starts with a general introduction of the prominence “object” with some historical background on observations and instrumentation. In the next chapter, the various forms of prominences are described with a thorough attempt of classification. Their thermodynamic (and velocity) properties are then derived with emphasis on the methods (and their limits) used. This goes from the simplest optically thin case to the heavy radiative treatment of plasmas out of local thermodynamic equilibrium. The following chapters are devoted to the magnetic field measurements and indirect derivation. A new branch of diagnostic tools, the seismology, is presented along with some MHD basics. This allows to better understand the propagation of waves, the energy and force equilibria. Both small-scale and large-scale studies and their relationship are presented. The importance of the newly discovered cavities is stressed in the context of prominence destabilization. The issues of prominence formation and eruption, their connection with flares and Coronal Mass Ejections and their impact on the Earth are addressed on the basis of the latest results. Finally, an exciting new area of research is unveiled with the newly discovered evidence of similar manifestations in the Universe and their possible impact on the habitability of exoplanets. References to the basic physics (where necessary) are provided and the proposed web sites addresses will allow the reader to load exciting movies. The book is aimed at advanced students in astrophysics, post-graduates, solar physicists and more generally astrophysicists. Amateurs will enjoy the many new images which go with the text.




A study of quiescent prominences using SDO and STEREO data


Book Description

In this dissertation, the structure, dynamics and evolution of two quiescent prominences were studied. Quiescent prominences are large structures and mainly associated with the quiet Sun region. For the analysis, the high spatial and temporal cadence data from the Solar Dynamic Observatory (SDO), and the Solar Terrestrial Relations Observatory (STEREO) were used. The observations from two different directions were combined and the prominence in 3D were studied. In the study of polar crown prominence, the prominence flows on limb were mainly investigated and its association with on-disk brightenings were found. The merging of diffused active region flux in the already formed chain of prominence caused the several brightenings in the filament channel and also injected the plasma upward with an average velocity of 15 km/s. In another study, the triggering mechanism of a quiescent tornado-like prominence was investigated. Flares from the neighboring active region triggered the tornado-like motions on the top of the prominence. Active region field contracts after the flare which results in the expansion of prominence cavity. The prominence helical magnetic field expands and plasma moves along the field lines which appear as a tornado-like activity. These observational investigations led to the understanding of structure and dynamics of quiescent prominences, which could be useful for theoretical prominence models.