Coupling Processes in the Lower and Middle Atmosphere


Book Description

The NATO Advanced Research Workshop on Coupling Processes in the Lower and Middle atmosphere held in Loen, Norway in May 1992 was, in the estimation of apparently all participants, an enormous success. The 18 invited speakers included many of the leaders in the field and resulted in the attendance of a large number of contributing speakers and observers. The subject of the workshop was itself very timely, given the increasing awareness within the international community of the sensitivity of the atmosphere to coupling between adjacent layers, different latitudes, and various scales of motion. It was also very beneficial to bring together researchers with different approaches to the same or similar problems. For example, experimentalists benefitted from the inputs of modelers and theoreticians concerning the needs of current models and the most pressing problems and unknowns. Likewise, theoreticians were challenged to apply themselves to realistic problems and saw their theories tested against geophysical data. These discussions led to meaningful exchanges of ideas and challenges to or displacement of conventional wisdom in some areas. Indeed, possibly the greatest benefit of the workshop was the exposure of many participants to other areas of research or approaches to problems relevant to their own work. Workshop topics were confined to dynamical coupling processes in order to examine progress in a relatively focussed area. Nevertheless, the results presented spanned spatial scales from molecular to global and temporal scales from seconds to decades.




Middle Atmosphere


Book Description

PAGEOPH, stratosphere, these differences provide us with new evidence, interpretation of which can materially help to advance our understanding of stratospheric dynamics in general. It is now weil established that smaller-scale motions-in particular gravity waves and turbulence-are of fundamental importance in the general circulation of the mesosphere; they seem to be similarly, if less spectacularly, significant in the troposphere, and probably also in the stratosphere. Our understanding of these motions, their effects on the mean circulation and their mutual interactions is progressing rapidly, as is weil illustrated by the papers in this issue; there are reports of observational studies, especially with new instruments such as the Japanese MV radar, reviews of the state of theory, a laboratory study and an analysis of gravity waves and their effects in the high resolution "SKYHI" general circulation model. There are good reasons to suspect that gravity waves may be of crucial significance in making the stratospheric circulation the way it is (modeling experience being one suggestive piece of evidence for this). Direct observational proof has thus far been prevented by the difficulty of making observations of such scales of motion in this region; in one study reported here, falling sphere observations are used to obtain information on the structure and intensity of waves in the upper stratosphere.




Aeronomy of the Middle Atmosphere


Book Description

"[...] an interesting and well-written overview of the current status of our knowledge of the composition of the middle atmosphere and the basic radiative, dynamical and photochemical processes which maintain it." (Bulletin American Meteorological Society)




Transport Processes in the Middle Atmosphere


Book Description

The NATO Advanced Research Workshop on "Transport Processes in the Middle Atmosphere" was held in Erice, Sicily, from November 23 through November 27, 1986. In addition to NATO, the workshop was supported by the International School of Atmospheric Physics of the Ettore Majorana Center for Scientific Culture, and by the National Research Council of Italy. The Organizing Committee was fortunate to enlist the participation of many of the experts in the field, and this book is an account of their contributions. In order to expedite publication and keep the results "as fresh as possible" , it was decided to forego formal review of the papers; instead, the authors were asked to solicit internal reviews from their colleagues. Further, each paper was thoroughly discussed and criticized during the meeting, and those discussions have been taken into account in the preparation of the final version of the manuscripts. Occasional short presentations were made by some of the Workshop participants who wished to provide information complementary to that given in the invited talks. These presentations are not included in this book, which contains only the invited papers. The book is organized into five chapters corresponding to the different topics cov ered by the Workshop. The first two chapters contain general reviews of the dynamical climatology of the middle atmosphere and of the growing body of data available on the dis tribution of chemical constituents.




Comparative Aeronomy


Book Description

Andrew F. Nagy Originally published in the journal Space Science Reviews, Volume 139, Nos 1–4. DOI: 10. 1007/s11214-008-9353-0 © Springer Science+Business Media B. V. 2008 Keywords Aeronomy The term “aeronomy” has been used widely for many decades, but its origin has mostly been lost over the years. It was introduced by Sydney Chapman in a Letter to the Editor, entitled “Some Thoughts on Nomenclature”, in Nature in 1946 (Chapman 1946). In that letter he suggested that aeronomy should replace meteorology, writing that the word “meteor is now irrelevant and misleading”. This proposal was apparently not received with much support so in a short note in Weather in 1953 Chapman (1953)wrote: “If, despite its obvious convenience of brevity in itself and its derivatives, it does not commend itself to aeronomers, I think there is a case for modifying my proposal so that instead of the word being used to signify the study of the atmosphere in general, it should be adopted with the restricted sense of the science of the upper atmosphere, for which there is no convenient short word. ” In a chapter, he wrote in a 1960 book (Chapman 1960), he give his nal and de nitive de nition, by stating that “Aeronomy is the science of the upper region of the atmosphere, where dissociation and ionization are important”. The Workshop on “Comparative Aeronomy” was held at ISSI during the week of June 25–29, 2007.




The Atmosphere and Climate of Mars


Book Description

Humanity has long been fascinated by the planet Mars. Was its climate ever conducive to life? What is the atmosphere like today and why did it change so dramatically over time? Eleven spacecraft have successfully flown to Mars since the Viking mission of the 1970s and early 1980s. These orbiters, landers and rovers have generated vast amounts of data that now span a Martian decade (roughly eighteen years). This new volume brings together the many new ideas about the atmosphere and climate system that have emerged, including the complex interplay of the volatile and dust cycles, the atmosphere-surface interactions that connect them over time, and the diversity of the planet's environment and its complex history. Including tutorials and explanations of complicated ideas, students, researchers and non-specialists alike are able to use this resource to gain a thorough and up-to-date understanding of this most Earth-like of planetary neighbours.




Stratosphere Troposphere Interactions


Book Description

Stratospheric processes play a signi?cant role in regulating the weather and c- mate of the Earth system. Solar radiation, which is the primary source of energy for the tropospheric weather systems, is absorbed by ozone when it passes through the stratosphere, thereby modulating the solar-forcing energy reaching into the t- posphere. The concentrations of the radiatively sensitive greenhouse gases present in the lower atmosphere, such as water vapor, carbon dioxide, and ozone, control the radiation balance of the atmosphere by the two-way interaction between the stratosphere and troposphere. The stratosphere is the transition region which interacts with the weather s- tems in the lower atmosphere and the richly ionized upper atmosphere. Therefore, this part of the atmosphere provides a long list of challenging scienti?c problems of basic nature involving its thermal structure, energetics, composition, dynamics, chemistry, and modeling. The lower stratosphere is very much linked dynamically, radiatively,and chemically with the upper troposphere,even though the temperature characteristics of these regions are different. The stratosphere is a region of high stability, rich in ozone and poor in water - por and temperature increases with altitude. The lower stratospheric ozone absorbs the harmful ultraviolet (UV) radiation from the sun and protects life on the Earth. On the other hand, the troposphere has high concentrations of water vapor, is low in ozone, and temperature decreases with altitude. The convective activity is more in the troposphere than in the stratosphere.




Atmospheric Evolution on Inhabited and Lifeless Worlds


Book Description

A comprehensive and authoritative text on the formation and evolution of planetary atmospheres, for graduate-level students and researchers.




Solar and Space Physics


Book Description

In 2010, NASA and the National Science Foundation asked the National Research Council to assemble a committee of experts to develop an integrated national strategy that would guide agency investments in solar and space physics for the years 2013-2022. That strategy, the result of nearly 2 years of effort by the survey committee, which worked with more than 100 scientists and engineers on eight supporting study panels, is presented in the 2013 publication, Solar and Space Physics: A Science for a Technological Society. This booklet, designed to be accessible to a broader audience of policymakers and the interested public, summarizes the content of that report.




Space Physics and Aeronomy, Ionosphere Dynamics and Applications


Book Description

A comprehensive review of global ionospheric research from the polar caps to equatorial regions It's more than a century since scientists first identified the ionosphere, the layer of the Earth’s upper atmosphere that is ionized by solar and cosmic radiation. Our understanding of this dynamic part of the near-Earth space environment has greatly advanced in recent years thanks to new observational technologies, improved numerical models, and powerful computing capabilities. Ionosphere Dynamics and Applications provides a comprehensive overview of historic developments, recent advances, and future directions in ionospheric research. Volume highlights include: Behavior of the ionosphere in different regions from the poles to the equator Distinct characteristics of the high-, mid-, and low-latitude ionosphere Observational results from ground- and space-based instruments Ionospheric impacts on radio signals and satellite operations How earthquakes and tsunamis on Earth cause disturbances in the ionosphere The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals. Find out more about the Space Physics and Aeronomy collection in this Q&A with the Editors in Chief




Recent Books