Creep in Timber Structures


Book Description

This book brings together up to date information from research and practice about the interaction between moisture changes and mechanical loading, which may lead to excessive deflections or joint movements in timber structures. It has important applications in timber engineering, and consequences for national and international structural codes of practice.







Structural Timber Design to Eurocode 5


Book Description

Structural Timber Design to Eurocode 5 is a comprehensive book which provides practising engineers and specialist contractors with detailed information and in-depth guidance on the design of timber structures based on the common rules and rules for buildings in Eurocode 5 - Part 1-1. It will also be of interest to undergraduate and postgraduate students of civil and structural engineering. The book provides a step-by-step approach to the design of all of the most commonly used timber elements and connections using solid timber, glued laminated timber or wood based structural products. It features numerous detailed worked examples, and incorporates the requirements of the UK National Annex. It covers the strength and stiffness properties of timber and its reconstituted and engineered products; the key requirements of Eurocode 0, Eurocode 1 and Eurocode 5 - Part 1-1; the design of beams and columns of solid timber, glued laminated, composite and thin-webbed sections; the lateral stability requirements of timber structures; and the design of mechanical connections subjected to lateral and/or axial forces as well as rigid and semi-rigid connections subjected to a moment. The Authors Jack Porteous is a consulting engineer specialising in timber engineering. He is a Chartered Engineer, Fellow of the Institution of Civil Engineers and Member of the Institution of Structural Engineers. He is a visiting scholar and lecturer in timber engineering at Napier University. Abdy Kermani is the Professor of Timber Engineering and R&D consultant at Napier University. He is a Chartered Engineer, Member of the Institution of Structural Engineers and Fellow of the Institute of Wood Science with over 20 years' experience in civil and structural engineering research, teaching and practice. The authors have led several research and development programmes on the structural use of timber and its reconstituted products. Their research work in timber engineering is internationally recognised and published widely. Also of Interest Timber Designers' Manual Third Edition E.C. Ozelton & J.A. Baird Paperback 978 14051 4671 5 Cover design by Garth Stewart




Creep in Timber Structures


Book Description

This book brings together up to date information from research and practice about the interaction between moisture changes and mechanical loading, which may lead to excessive deflections or joint movements in timber structures. It has important applications in timber engineering, and consequences for national and international structural codes of practice.




Timber; Its Nature and Behaviour, Second Edition


Book Description

Timber: Its Nature and Behaviour adopts a materials science approach to timber, and comprehensively examines the relationship between the performance of timber and its structure. This book explains a wide range of timbers physical and mechanical behaviour (including processing) in terms of its basic structure and its complex interaction with moisture. The performance of timber and panel products is also related to the levels set in new European specifications and with the associated methods of testing.




Materials and Joints in Timber Structures


Book Description

This book contains the contributions from the RILEM International Symposium on Materials and Joints in Timber Structures that was held in Stuttgart, Germany from October 8 to 10, 2013. It covers recent developments in the materials and the joints used in modern timber structures. Regarding basic wooden materials, the contributions highlight the widened spectrum of products comprising cross-laminated timber, glulam and LVL from hardwoods and block glued elements. Timber concrete compounds, cement bonded wood composites and innovative light-weight constructions represent increasingly employed alternatives for floors, bridges and facades. With regard to jointing technologies, considerable advances in both mechanical connections and glued joints are presented. Self-tapping screws have created unprecedented options for reliable, strong as well as ductile joints and reinforcement technologies. Regarding adhesives, which constitute the basis of the jointing/laminating technology of modern timber products, extended options for tailor-made bonding solutions have to be stated. Apart from melamine-urea and phenolic-resorcinol adhesives, one-component-polyurethanes, emulsion isocyanate polymers and epoxies offer a wide range of possibilities. The contributions dealing with experimental and numerical investigations on static, cyclic and seismic behavior of structures clearly reveal the enhanced potential of modern timber construction for reliable and sustainable buildings and bridges of the new millennium. The book is structured in nine thematic areas, being I) Structures II) Mechanical Connections III) Glued Joints and Adhesives IV) Timber and Concrete/Cement/Polymer Composites V) Cyclic, Seismic Behavior VI) Hardwood, Modified Wood and Bamboo VII) Cross-Laminated Timber VIII) Properties and Testing of Wood IX) Glulam




Reliability of Timber Structures


Book Description







High Performance and Optimum Design of Structures and Materials


Book Description

The use of novel materials and new structural concepts nowadays is not restricted to highly technical areas like aerospace, aeronautical applications or the automotive industry, but affects all engineering fields including those such as civil engineering and architecture. Addressing issues involving advanced types of structures, particularly those based on new concepts or new materials and their system design, contributions highlight the latest developments in design, optimisation, manufacturing and experimentation. Also included are contributions on new software, numerical methods and different optimisation techniques. Optimisation problems of interest involve those related to size, shape and topology of structures and materials. Most high performance structures require the development of a generation of new materials, which can more easily resist a range of external stimuli or react in a non-conventional manner. Particular emphasis is placed on intelligent structures and materials as well as the application of computational methods for their modelling, control and management. Optimisation techniques have much to offer to those involved in the design of new industrial products. The formulation of optimum design has evolved from the time it was purely an academic topic, able now to satisfy the requirements of real life prototypes. The development of new algorithms and the appearance of powerful commercial computer codes, with easy to use graphical interfaces, have created a fertile field for the incorporation of optimisation in the design process in all engineering disciplines. This proceedings volume is the first from a new edition of the High Performance Design of Structures and Materials and the Optimum Design of Structures conferences, which follows the success of a number of meetings that originated in 1989. Topics covered include: Composite materials & structures; Material characterisation; Experiments and numerical analysis; Steel structures; High performance concretes; Natural fibre composites; Transformable structures; Lightweight structures; Timber structures; Environmentally friendly and sustainable structures; Emerging structural applications; Optimisation in civil engineering; Evolutionary methods in optimisation; Shape and topology optimisation; Aerospace structures; Structural optimisation; Biomechanics application; Material optimisation; Life cost optimisation; Intelligence structures and smart materials.




Timber Engineering


Book Description

Timber construction is one of the most prevalent methods of constructing buildings in North America and an increasingly significant method of construction in Europe and the rest of the world. Timber Engineering deals not only with the structural aspects of timber construction, structural components, joints and systems based on solid timber and engineered wood products, but also material behaviour and properties on a wood element level. Produced by internationally renowned experts in the field, this book represents the state of the art in research on the understanding of the material behaviour of solid wood and engineered wood products. There is no comparable compendium currently available on the topic - the subjects represented include the most recent phenomena of timber engineering and the newest development of practice-related research. Grouped into three different sections, 'Basic properties of wood-based structural elements', 'Design aspects on timber structures' and 'Joints and structural assemblies', this book focuses on key issues in the understanding of: timber as a modern engineered construction material with controlled and documented properties the background for design of structural systems based on timber and engineered wood products the background for structural design of joints in structural timber systems Furthermore, this invaluable book contains advanced teaching material for all technical schools and universities involved in timber engineering. It also provides an essential resource for timber engineering students and researchers, as well as practicing structural and civil engineers.