Deficit Irrigation Practices


Book Description

In the context of improving water productivity, there is a growing interest in deficit irrigation, an irrigation practice whereby water supply is reduced below maximum levels and mild stress is allowed with minimal effects on yield. Under conditions of scarce water supply and drought, deficit irrigation can lead to greater economic gains than maximizing yields per unit of water for a given crop; farmers are more inclined to use water more efficiently, and more water-efficient cash crop selection helps optimize returns. However, this approach requires precise knowledge of crop response to water as drought tolerance varies considerably by species, cultivar and stage of growth. The studies present the latest research concepts and involve various practices for deficit irrigation. Both annual and perennial crops were exposed to different levels of water stress, either during a particular growth phase, throughout the whole growing season or in a combination of growth stages. The overall finding, based on the synthesis of the different contributions, is that deficit or regulated-deficit irrigation can be beneficial where appropriately applied. Substantial savings of water can be achieved with little impact on the quality and quantity of the harvested yield. However, to be successful, an intimate knowledge of crop behavior is required, as crop response to water stress varies considerably.




Water Productivity in Agriculture


Book Description

First title in a major new seriesAddresses improving water productivity to relieve problems of scarcity and competition to provide for food and environmental securityDraws from scientists having a multitude of disciplines to approach this important problemIn a large number of developing countries, policy makers and researchers are increasingly aware of the conflicting demands on water, and look at agriculture to be more effective in its use of water. Focusing on both irrigated and rain-fed agriculture, this book gives a state of the art review of the limits and opportunities for improving water productivity in crop production. It demonstrates how efficiency of water use can be enhanced to maximize yields. The book represents the first in a new series of volumes resulting from the Comprehensive Assessment of Water Management in Agriculture, a research program conducted by the CGIAR's Future Harvest Centres, the Food and Agriculture Organization of the United Nations and partners worldwide. It will be of significant interest to those working in areas of soil and crop science, water management, irrigation, and development studies.







Deficit Irrigation for Wheat Cultivation Under Limited Water Supply Condition


Book Description

Vertical and horizontal expansion of irrigated agriculture to feed the increasing population has contributed to excessive groundwater withdrawal and affected the availability of water in terms of both quality and quantity. To sustain agricultural growth, strategic measures should be adopted to reduce water consumption while minimizing adverse effect on yield. The effect of deficit irrigation on wheat yield was studied in three consecutive years (2002-03 to 2004-05) in field and pot. Ten irrigation treatments were imposed in a randomized complete block (RCB) design covering full deficit, no deficit at all, single deficit at different stages, and alternate deficits. Water deficit was created by withholding irrigation at different growth stages. The results indicate that deficit irrigation strategies affected all aspects of plant growth (leaf area index, chlorophyll content, root growth, nutrient uptake, plant height) adversely. Yield attributes were affected by deficit irrigation treatments although they are not statistically significant in all cases. Differences in grain and straw yield among the partial- and no-deficit treatments were small, and statistically insignificant in most cases. When compared within single-deficit treatments, the grain yield reduction was in the order to water deficit at phases: CRI> maximum tillering > booting - heading >flowering- soft dough. The crop coefficient (kc) under different ET0 methods for early, crop development, middle, and late period ranged from 0.54 to 0.96, 0.95 to 1.36, 1.2 to 1.62, and 0.68 to 1.05, respectively. On average, yield response factor (ky) for early, maximum tillering, booting-heading, and flowering-soft dough stages was 0.27, 0.21, 0.25, and 0.17, respectively. The sensitivity index (?i, of Jensen model) for early, vegetative, booting-heading, and flowering-soft dough phases was 0.35, 0.22, 0.31, and 0.14, respectively. From the evaluation of yield, irrigation amount, irrigation water productivity, relative water savings, relative yield reduction, and maximum profit under limited water resource condition, it can be concluded that when limited quantities of water is available, preference should be given to irrigate first at CRI (if one irrigation is available), then at CRI and booting-heading (if two irrigations are available), and next at CRI, maximum tillering and booting-heading (if three irrigations are available) stages of growth.




Accounting for Water Use and Productivity


Book Description

This paper presents a conceptual framework for water accounting and provides generic terminologies and procedures to describe the status of water resource use and consequences of water resources related actions. The framework applies to water resource use at three levels of analysis: a use level such as an irrigated field or household, a service level such as an irrigation or water supply system, and a water basin level that may include several uses. Water accounting terminology and performance indicators are developed and presented with examples at all the three levels. Concepts and terminologies presented are developed to be supportive in a number of activities including: identification of opportunities for water savings and increasing water productivity; developing a better understanding of present patterns of water use and impacts of interventions; improving communication among professionals and communication to non-water professionals; and improving the rationale for allocation of water among uses. It is expected that with further application, these water accounting concepts will evolve into a robust, supporting methodology for water basin analysis.




Crop Yield Response to Deficit Irrigation


Book Description

This book discusses general concept and management issues of deficient irrigation practices, covering a wide range of field crops including cotton, maize, soybean, wheat, sugarcane, and the like, based on five years of field research implemented in fourteen different countries, in Latin America, Africa, Europe and Asia. Additionally, guidelines are given for experimental methodology and data analysis for evaluating crop yield response to deficient irrigation. Experimental data, discussions and cited references will be an asset not only to field irrigation engineers but also to research scientists including soil and irrigation scientists and agronomists, for whom the book would be an invaluable reference source.




Guidelines for Predicting Crop Water Requirements


Book Description

Calculation of crop evapotranspiration; Selection of crop coeficient; Calculation of field irrigation requirements.




Drought and Water Crises


Book Description

Today the world is facing a greater water crisis than ever. Droughts of lesser magnitude are resulting in greater impact. Even in years with normal precipitation, water shortages have become widespread in both developing and developed nations, in humid as well as arid climates. When faced with severe drought, governments become eager to act. Unfort




Evaporation, Evapotranspiration, and Irrigation Water Requirements


Book Description

MOP 70 is a comprehensive reference to estimating the water quantities needed for irrigation of crops projects based upon the physics of evaporation and evapotranspiration (ET).




Rainfed Farming Systems


Book Description

While a good grasp of the many separate aspects of agriculture is important, it is equally essential for all those involved in agriculture to understand the functioning of the farming system as a whole and how it can be best managed. It is necessary to re-assess and understand rain-fed farming systems around the world and to find ways to improve the selection, design and operation of such systems for long term productivity, profitability and sustainability. The components of the system must operate together efficiently; yet many of the relationships and interactions are not clearly understood. Appreciation of these matters and how they are affected by external influences or inputs are important for decision making and for achieving desirable outcomes for the farm as a whole. This book analyses common rain-fed farming systems and defines the principles and practices important to their effective functioning and management.