Crystal Optics: Properties and Applications


Book Description

Reviews the properties and applications of photo-elastic, acousto-optic, magneto-optic, electro-optic, and photorefractive materials This book deals with the basic physical properties and applications of photo-elastic, acousto-optic, magneto-optic, electro-optic, and photorefractive materials. It also provides up-to-date information on the design and applications of various optoelectronic devices based on these materials. The first chapter of Crystal Optics: Properties and Applications covers the basic concepts of crystal optics, such as index ellipsoid or optical indicatrix, crystal symmetry, wave surface, birefringence, and the polarization of light. Chapter 2 reviews the physical phenomena of crystal optics in isotropic and crystalline materials. It describes in detail research information on modern photoelastic materials and reviews the up-to-date photoelastic device applications. Chapter 3 develops the underlying theory of acousto-optics from first principles, formulating results suitable for subsequent calculations and design. The fourth chapter describes the basic principles of magneto-optic effects and mode of interaction with magnetic materials. The fifth chapter provides an understanding of the physical phenomenon of the linear and quadratic electro-optic effects in isotropic and crystalline materials. The last chapter collects many of the most important recent developments in photorefractive effects and materials, and pays special attention to recent scientific findings and advances on photorefractive materials and devices. -Features up to date information on the design and applications of various optoelectronic devices -Looks at the basic concepts of crystal optics, including the polarization of light, effects of reflection and transmission of polarization and light polarizing devices, and more -Pays special attention to design procedures for the entire range of acousto-optic devices and various applications of these devices -Provides research information on modern magneto-optic materials and reviews the up-to-date magneto-optic device applications?up to terahertz (THz) regime Crystal Optics: Properties and Applications is an excellent book for the scientific community working in the field, including researchers, lecturers, and advanced students.




Crystal Optics with Spatial Dispersion, and Excitons


Book Description

Spatial dispersion, namely, the dependence of the dielectric-constant tensor on the wave vector (i.e., on the wavelength) at a fixed frequency, is receiving increased attention in electrodynamics and condensed-matter optics, partic ularly in crystal optics. In contrast to frequency dispersion, namely, the frequency dependence of the dielectric constant, spatial dispersion is of interest in optics mainly when it leads to qualitatively new phenomena. One such phenomenon has been weH known for many years; it is the natural optical activity (gyrotropy). But there are other interesting effects due to spatial dispersion, namely, new normal waves near absorption lines, optical anisotropy of cubic crystals, and many others. Crystal optics that takes spatial dispersion into account includes classical crystal optics with frequency dispersion only, as a special case. In our opinion, this fact alone justifies efforts to develop crystal optics with spatial dispersion taken into account, although admittedly its influence is smaH in some cases and it is observable only under rather special conditions. Furthermore, spatial dispersion in crystal optics deserves attention from another point as well, namely, the investigation of excitons that can be excited by light. We contend that crystal optics with spatial dispersion and the theory of excitons are fields that overlap to a great extent, and that it is sometimes quite impossible to separate them. It is our aim to show the true interplay be tween these interrelations and to combine the macroscopic and microscopic approaches to crystal optics with spatial dispersion and exciton theory.




On the Foundations of Crystal Optics


Book Description

The reports investigates the propagation of light in the visible region through a crystalline medium. In Part I, the objective is to determine if the anisotropic arrangement of ordinary (isotropic) dipoles at the nodal points of an orthorhombic lattice would account for the existence of double refraction. Some features of the traditional 'theory of dispersion' are disclosed and clarified. In part II, a crystalline medium is considered as filling a half- space and having a plane boundary at z=0. A plane optical wave is incident on this medium. Because of the linearity of the equations it has to be superimposed on the field originating in the crystal. It is shown that this incident optical wave is actually prevented from entering the crystal because of the modification produced in the field of the crystal by the introduction of a boundary. Material Added 1970. The conclusion that the incident optical field cannot penetrate the crystal boundary, together with a similar conclusion in a paper by Oseen, is the basis of the Ewald-Oseen Extinction Theorem.




Light Scattering by Ice Crystals


Book Description

This volume outlines the fundamentals and applications of light scattering, absorption and polarization processes involving ice crystals.




Crystal Optics: Properties and Applications


Book Description

Reviews the properties and applications of photo-elastic, acousto-optic, magneto-optic, electro-optic, and photorefractive materials This book deals with the basic physical properties and applications of photo-elastic, acousto-optic, magneto-optic, electro-optic, and photorefractive materials. It also provides up-to-date information on the design and applications of various optoelectronic devices based on these materials. The first chapter of Crystal Optics: Properties and Applications covers the basic concepts of crystal optics, such as index ellipsoid or optical indicatrix, crystal symmetry, wave surface, birefringence, and the polarization of light. Chapter 2 reviews the physical phenomena of crystal optics in isotropic and crystalline materials. It describes in detail research information on modern photoelastic materials and reviews the up-to-date photoelastic device applications. Chapter 3 develops the underlying theory of acousto-optics from first principles, formulating results suitable for subsequent calculations and design. The fourth chapter describes the basic principles of magneto-optic effects and mode of interaction with magnetic materials. The fifth chapter provides an understanding of the physical phenomenon of the linear and quadratic electro-optic effects in isotropic and crystalline materials. The last chapter collects many of the most important recent developments in photorefractive effects and materials, and pays special attention to recent scientific findings and advances on photorefractive materials and devices. -Features up to date information on the design and applications of various optoelectronic devices -Looks at the basic concepts of crystal optics, including the polarization of light, effects of reflection and transmission of polarization and light polarizing devices, and more -Pays special attention to design procedures for the entire range of acousto-optic devices and various applications of these devices -Provides research information on modern magneto-optic materials and reviews the up-to-date magneto-optic device applications?up to terahertz (THz) regime Crystal Optics: Properties and Applications is an excellent book for the scientific community working in the field, including researchers, lecturers, and advanced students.




Optical Waves in Crystals


Book Description

Describes how laser radiation propagates in natural and artificial materials and how the state of radiation can be controlled and manipulated (phase intensity, polarization) by various means. New concepts and useful techniques are described in the problems. Includes many figures, tables, and examples.







Optics of Liquid Crystal Displays


Book Description

NOW UPDATED—THE HIGHLY PRACTICAL GUIDE TO ANALYZING LIQUID CRYSTAL DISPLAYS The subject of liquid crystal displays has vigorously evolved into an exciting interdisciplinary field of research and development, involving optics, materials, and electronics. Updated to reflect recent advances, the Second Edition of Optics of Liquid Crystal Displays now offers a broader, more comprehensive discussion on the fundamentals of display systems and teaches readers how to analyze and design new components and subsystems for LCDs. New features of this edition include: Discussion of the dynamics of molecular reorientation Expanded information of the method of Poincaré sphere in various optical components, including achromatic wave plates and compensators Neutral and negative Biaxial thin films for compensators Circular polarizers and anti-reflection coatings The introduction of wide field-of-view wave plates and filters Comprehensive coverage of VA-LCD and IPS-LCD Additional numerical examples This updated edition is intended as a textbook for students in electrical engineering and applied physics, as well as a reference book for engineers and scientists working in the area of research and development of display technologies.