Rubber Curing Systems


Book Description

This review discusses the different types of curing systems available today for different rubber types, including natural rubber, SBR, NBR, BR, IIR, CR, XIIR and EPDM. The uses of primary and secondary accelerators, prevulcanisation inhibitors (PVIs) and antireversion chemicals are outlined.Typical rubber formulations for applications in industrial rubber products and tyres are given. Cure systems are described and compared with extensive tables of data on formulae and compound properties. An additional indexed section containing several hundred abstracts from the Rapra Polymer Library database gives useful references for further reading.







The Rubber Age


Book Description




Rubber Compounding


Book Description

This revised and expanded single-source reference analyzes all compounding material classes of dry rubber compounds, such as carbon blacks, platicizers and age resisters, integrating detailed information on how elastomers are built up. The work provides practical compounding tips on how to avoid oil or antioxidant bloom, how to adjust electrical conductivity and how to meet volume swell requirements.;This second edition: provides material on government regulations regarding rubber waste; presents current insights into the fast-growing polymer technology of thermoplastic elastomers; discusses the ramifications of the commercial availability of epoxidized natural rubber; and offers a comprehensive tabular chart on the properties of polymers.







Rubber Technology


Book Description

About ten years after the publication of the Second Edition (1973), it became apparent that it was time for an up-date of this book. This was especially true in this case, since the subject matter has traditionally dealt mainly with the structure, properties, and technology of the various elastomers used in industry, and these are bound to undergo significant changes over the period of a decade. In revising the contents of this volume, it was thought best to keep the orig inal format. Hence the first five chapters discuss the same general subject matter as before. The chapters dealing with natural rubber and the synthetic elastomers are up-dated, and an entirely new chapter has been added on the thermoplastic elastomers, which have, of course, grown tremendously in importance. Another innovation is the addition of a new chapter, "Miscellaneous Elastomers," to take care of "old" elastomers, e.g., polysulfides, which have decreased some what in importance, as well as to introduce some of the newly-developed syn thetic rubbers which have not yet reached high production levels. The editor wishes to express his sincere appreciation to all the contributors, without whose close cooperation this task would have been impossible. He would especially like to acknowledge the invaluable assistance of Dr. Howard Stephens in the planning of this book, and for his suggestion of suitable authors.




Rubber in the Environmental Age


Book Description




Anticorrosive Rubber Lining


Book Description

Anticorrosive Rubber Lining discusses the state-of-the-art in this evolving industry, including sections on the best materials and formulations to use, what's best for a particular application, which repair technique is best for a given application, how long a rubber lining is likely to last, vulcanization parameters, and more. This book deals with the important field of anticorrosive rubber lining and its applications in various industries, including oil and gas, nuclear, aerospace, maritime, and many more, highlighting many of the technological aspects involved. The author offers a unique perspective due to the exclusiveness of the case histories presented, including many industrial rubber lining practices which are mostly kept within the industry. The technical information on rubber presented here is a practical tool to enable engineers to make the best use of rubber linings to prevent corrosion in chemical plants. The book includes valuable insights into bonding systems, surface preparation, and coating methodologies, and also covers failure analysis of failed systems. - Includes up-to-date technical information on special compounding and processing technology of recently developed synthetic rubbers - Provides detailed case studies from industry sectors, including aerospace, nuclear energy, and mining - Presents rare, valuable insider knowledge of current industry practice




Reverse Engineering of Rubber Products


Book Description

Reverse engineering is widely practiced in the rubber industry. Companies routinely analyze competitors’ products to gather information about specifications or compositions. In a competitive market, introducing new products with better features and at a faster pace is critical for any manufacturer. Reverse Engineering of Rubber Products: Concepts, Tools, and Techniques explains the principles and science behind rubber formulation development by reverse engineering methods. The book describes the tools and analytical techniques used to discover which materials and processes were used to produce a particular vulcanized rubber compound from a combination of raw rubber, chemicals, and pigments. A Compendium of Chemical, Analytical, and Physical Test Methods Organized into five chapters, the book first reviews the construction of compounding ingredients and formulations, from elastomers, fillers, and protective agents to vulcanizing chemicals and processing aids. It then discusses chemical and analytical methods, including infrared spectroscopy, thermal analysis, chromatography, and microscopy. It also examines physical test methods for visco-elastic behavior, heat aging, hardness, and other features. A chapter presents important reverse engineering concepts. In addition, the book includes a wide variety of case studies of formula reconstruction, covering large products such as tires and belts as well as smaller products like seals and hoses. Get Practical Insights on Reverse Engineering from the Book’s Case Studies Combining scientific principles and practical advice, this book brings together helpful insights on reverse engineering in the rubber industry. It is an invaluable reference for scientists, engineers, and researchers who want to produce comparative benchmark information, discover formulations used throughout the industry, improve product performance, and shorten the product development cycle.