Current Developments in Lens Design and Optical Engineering VIII


Book Description

Proceedings of SPIE present the original research papers presented at SPIE conferences and other high-quality conferences in the broad-ranging fields of optics and photonics. These books provide prompt access to the latest innovations in research and technology in their respective fields. Proceedings of SPIE are among the most cited references in patent literature.







Lens Design Fundamentals


Book Description

- Thoroughly revised and expanded to reflect the substantial changes in the field since its publication in 1978 - Strong emphasis on how to effectively use software design packages, indispensable to today's lens designer - Many new lens design problems and examples – ranging from simple lenses to complex zoom lenses and mirror systems – give insight for both the newcomer and specialist in the field Rudolf Kingslake is regarded as the American father of lens design; his book, not revised since its publication in 1978, is viewed as a classic in the field. Naturally, the area has developed considerably since the book was published, the most obvious changes being the availability of powerful lens design software packages, theoretical advances, and new surface fabrication technologies. This book provides the skills and knowledge to move into the exciting world of contemporary lens design and develop practical lenses needed for the great variety of 21st-century applications. Continuing to focus on fundamental methods and procedures of lens design, this revision by R. Barry Johnson of a classic modernizes symbology and nomenclature, improves conceptual clarity, broadens the study of aberrations, enhances discussion of multi-mirror systems, adds tilted and decentered systems with eccentric pupils, explores use of aberrations in the optimization process, enlarges field flattener concepts, expands discussion of image analysis, includes many new exemplary examples to illustrate concepts, and much more. Optical engineers working in lens design will find this book an invaluable guide to lens design in traditional and emerging areas of application; it is also suited to advanced undergraduate or graduate course in lens design principles and as a self-learning tutorial and reference for the practitioner. Rudolf Kingslake (1903-2003) was a founding faculty member of the Institute of Optics at The University of Rochester (1929) and remained teaching until 1983. Concurrently, in 1937 he became head of the lens design department at Eastman Kodak until his retirement in 1969. Dr. Kingslake published numerous papers, books, and was awarded many patents. He was a Fellow of SPIE and OSA, and an OSA President (1947-48). He was awarded the Progress Medal from SMPTE (1978), the Frederic Ives Medal (1973), and the Gold Medal of SPIE (1980). R. Barry Johnson has been involved for over 40 years in lens design, optical systems design, and electro-optical systems engineering. He has been a faculty member at three academic institutions engaged in optics education and research, co-founder of the Center for Applied Optics at the University of Alabama in Huntsville, employed by a number of companies, and provided consulting services. Dr. Johnson is an SPIE Fellow and Life Member, OSA Fellow, and an SPIE President (1987). He published numerous papers and has been awarded many patents. Dr. Johnson was founder and Chairman of the SPIE Lens Design Working Group (1988-2002), is an active Program Committee member of the International Optical Design Conference, and perennial co-chair of the annual SPIE Current Developments in Lens Design and Optical Engineering Conference. - Thoroughly revised and expanded to reflect the substantial changes in the field since its publication in 1978 - Strong emphasis on how to effectively use software design packages, indispensable to today's lens designer - Many new lens design problems and examples – ranging from simple lenses to complex zoom lenses and mirror systems – give insight for both the newcomer and specialist in the field







Polarized Light and Optical Systems


Book Description

Polarized Light and Optical Systems presents polarization optics for undergraduate and graduate students in a way which makes classroom teaching relevant to current issues in optical engineering. This curriculum has been developed and refined for a decade and a half at the University of Arizona’s College of Optical Sciences. Polarized Light and Optical Systems provides a reference for the optical engineer and optical designer in issues related to building polarimeters, designing displays, and polarization critical optical systems. The central theme of Polarized Light and Optical Systems is a unifying treatment of polarization elements as optical elements and optical elements as polarization elements. Key Features Comprehensive presentation of Jones calculus and Mueller calculus with tables and derivations of the Jones and Mueller matrices for polarization elements and polarization effects Classroom-appropriate presentations of polarization of birefringent materials, thin films, stress birefringence, crystal polarizers, liquid crystals, and gratings Discussion of the many forms of polarimeters, their trade-offs, data reduction methods, and polarization artifacts Exposition of the polarization ray tracing calculus to integrate polarization with ray tracing Explanation of the sources of polarization aberrations in optical systems and the functional forms of these polarization aberrations Problem sets to build students’ problem-solving capabilities.




Current Developments in Lens Design and Optical Engineering XVIII


Book Description

Proceedings of SPIE present the original research papers presented at SPIE conferences and other high-quality conferences in the broad-ranging fields of optics and photonics. These books provide prompt access to the latest innovations in research and technology in their respective fields. Proceedings of SPIE are among the most cited references in patent literature.




Environment, Energy and Sustainable Development


Book Description

Environment, Energy and Sustainable Development brings together 242 peer-reviewed papers presented at the 2013 International Conference on Frontiers of Energy and Environment Engineering, held in Xiamen, China, November 28-29, 2013.The main objective of this proceedings set is to take the environment-energydevelopments discussion a step further. Vo




Modern Optical Engineering


Book Description

A revised version of a text which was first published in 1966. The book is designed as a general reference book for engineers and assumes a broad knowledge of current optical systems and their design. Additional topics include fibre optics, thin films and CAD systems.




Digital Avionics Handbook, Third Edition


Book Description

A perennial bestseller, the Digital Avionics Handbook offers a comprehensive view of avionics. Complete with case studies of avionics architectures as well as examples of modern systems flying on current military and civil aircraft, this Third Edition includes: Ten brand-new chapters covering new topics and emerging trends Significant restructuring to deliver a more coherent and cohesive story Updates to all existing chapters to reflect the latest software and technologies Featuring discussions of new data bus and display concepts involving retina scanning, speech interaction, and synthetic vision, the Digital Avionics Handbook, Third Edition provides practicing and aspiring electrical, aerospace, avionics, and control systems engineers with a pragmatic look at the present state of the art of avionics.




Handbook of Optomechanical Engineering


Book Description

Good optical design is not in itself adequate for optimum performance of optical systems. The mechanical design of the optics and associated support structures is every bit as important as the optics themselves. Optomechanical engineering plays an increasingly important role in the success of new laser systems, space telescopes and instruments, biomedical and optical communication equipment, imaging entertainment systems, and more. This is the first handbook on the subject of optomechanical engineering, a subject that has become very important in the area of optics during the last decade. Covering all major aspects of optomechanical engineering - from conceptual design to fabrication and integration of complex optical systems - this handbook is comprehensive. The practical information within is ideal for optical and optomechanical engineers and scientists involved in the design, development and integration of modern optical systems for commercial, space, and military applications. Charts, tables, figures, and photos augment this already impressive handbook. The text consists of ten chapters, each authored by a world-renowned expert. This unique collaboration makes the Handbook a comprehensive source of cutting edge information and research in the important field of optomechanical engineering. Some of the current research trends that are covered include: