Curves and Fractal Dimension


Book Description

Written for mathematicians, engineers, and researchers in experimental science, as well as anyone interested in fractals, this book explains the geometrical and analytical properties of trajectories, aggregate contours, geographical coastlines, profiles of rough surfaces, and other curves of finite and fractal length. The approach is by way of precise definitions from which properties are deduced and applications and computational methods are derived. Written without the traditional heavy symbolism of mathematics texts, this book requires two years of calculus while also containing material appropriate for graduate coursework in curve analysis and/or fractal dimension.




The Family Tree of Fractal Curves


Book Description

This book explains a taxonomy of plane-filling curves (fractal curves with a fractal dimension of 2). it includes the classic fractal curves described in Mandelbrot's original book. Many new fractal curves are introduced. The taxonomy is based upon the Gaussian integers and the Eisenstein integers - each forming a lattice (square and triangular). These lattices have algebraic properties, which allows number theory to be used in describing and classifying these curves. This work has been under development for over 30 years. An earlier version of this taxonomy is described in the book ""Brain-filling Curves"", also by Jeffrey Ventrella. More on plane-filling curves can be found at fractalcurves.com




Galileo Unbound


Book Description

Galileo Unbound traces the journey that brought us from Galileo's law of free fall to today's geneticists measuring evolutionary drift, entangled quantum particles moving among many worlds, and our lives as trajectories traversing a health space with thousands of dimensions. Remarkably, common themes persist that predict the evolution of species as readily as the orbits of planets or the collapse of stars into black holes. This book tells the history of spaces of expanding dimension and increasing abstraction and how they continue today to give new insight into the physics of complex systems. Galileo published the first modern law of motion, the Law of Fall, that was ideal and simple, laying the foundation upon which Newton built the first theory of dynamics. Early in the twentieth century, geometry became the cause of motion rather than the result when Einstein envisioned the fabric of space-time warped by mass and energy, forcing light rays to bend past the Sun. Possibly more radical was Feynman's dilemma of quantum particles taking all paths at once — setting the stage for the modern fields of quantum field theory and quantum computing. Yet as concepts of motion have evolved, one thing has remained constant, the need to track ever more complex changes and to capture their essence, to find patterns in the chaos as we try to predict and control our world.




Brainfilling Curves - A Fractal Bestiary


Book Description

* A lovingly-crafted visual expedition, lead by a lifelong fractal wizard with an obsession for categorizing fractal species * Hundreds of beautiful color images * An in-depth taxonomy of Koch-constructed Fractal Curves * An intuitive introduction to Koch construction * A must-read for anyone interested in fractal geometry




The Geometry of Fractal Sets


Book Description

A mathematical study of the geometrical aspects of sets of both integral and fractional Hausdorff dimension. Considers questions of local density, the existence of tangents of such sets as well as the dimensional properties of their projections in various directions.




Measuring the Fractal Dimensions of Empirical Cartographic Curves


Book Description

This paper discusses an algorithm, which simulates walking a pair of dividers along a curve, used to calculate the fractal dimensions of curves. It also discusses the choice of chord length and the number of solution steps used in computing fracticality. Results demonstrate the algorithm to be stable and that a curve's fractal dimension can be closely approximated. Potential applications for this technique include a new means for curvilinear data compression, description of planimetric feature boundary texture for improved realism in scene generation and possible two-dimensional extension for description of surface feature textures.




Fractals in Probability and Analysis


Book Description

A mathematically rigorous introduction to fractals, emphasizing examples and fundamental ideas while minimizing technicalities.




Fractal Dimension for Fractal Structures


Book Description

This book provides a generalised approach to fractal dimension theory from the standpoint of asymmetric topology by employing the concept of a fractal structure. The fractal dimension is the main invariant of a fractal set, and provides useful information regarding the irregularities it presents when examined at a suitable level of detail. New theoretical models for calculating the fractal dimension of any subset with respect to a fractal structure are posed to generalise both the Hausdorff and box-counting dimensions. Some specific results for self-similar sets are also proved. Unlike classical fractal dimensions, these new models can be used with empirical applications of fractal dimension including non-Euclidean contexts. In addition, the book applies these fractal dimensions to explore long-memory in financial markets. In particular, novel results linking both fractal dimension and the Hurst exponent are provided. As such, the book provides a number of algorithms for properly calculating the self-similarity exponent of a wide range of processes, including (fractional) Brownian motion and Lévy stable processes. The algorithms also make it possible to analyse long-memory in real stocks and international indexes. This book is addressed to those researchers interested in fractal geometry, self-similarity patterns, and computational applications involving fractal dimension and Hurst exponent.




Fractals: A Very Short Introduction


Book Description

Many are familiar with the beauty and ubiquity of fractal forms within nature. Unlike the study of smooth forms such as spheres, fractal geometry describes more familiar shapes and patterns, such as the complex contours of coastlines, the outlines of clouds, and the branching of trees. In this Very Short Introduction, Kenneth Falconer looks at the roots of the 'fractal revolution' that occurred in mathematics in the 20th century, presents the 'new geometry' of fractals, explains the basic concepts, and explores the wide range of applications in science, and in aspects of economics. This is essential introductory reading for students of mathematics and science, and those interested in popular science and mathematics. ABOUT THE SERIES: The Very Short Introductions series from Oxford University Press contains hundreds of titles in almost every subject area. These pocket-sized books are the perfect way to get ahead in a new subject quickly. Our expert authors combine facts, analysis, perspective, new ideas, and enthusiasm to make interesting and challenging topics highly readable.




Fractal Analysis


Book Description

A specialized presentation of fractal analysis oriented to the social sciences This primer uses straightforward language to give the reader step-by-step instructions for identifying and analyzing fractal patterns and the social process that create them. By making fractals accessible to the social science students, this book has a significant impact on the understanding of human behavior. This is the only book designed to introduce fractal analysis to a general social science audience.