The Economics of Data, Analytics, and Digital Transformation


Book Description

Build a continuously learning and adapting organization that can extract increasing levels of business, customer and operational value from the amalgamation of data and advanced analytics such as AI and Machine Learning Key Features Master the Big Data Business Model Maturity Index methodology to transition to a value-driven organizational mindset Acquire implementable knowledge on digital transformation through 8 practical laws Explore the economics behind digital assets (data and analytics) that appreciate in value when constructed and deployed correctly Book Description In today's digital era, every organization has data, but just possessing enormous amounts of data is not a sufficient market discriminator. The Economics of Data, Analytics, and Digital Transformation aims to provide actionable insights into the real market discriminators, including an organization's data-fueled analytics products that inspire innovation, deliver insights, help make practical decisions, generate value, and produce mission success for the enterprise. The book begins by first building your mindset to be value-driven and introducing the Big Data Business Model Maturity Index, its maturity index phases, and how to navigate the index. You will explore value engineering, where you will learn how to identify key business initiatives, stakeholders, advanced analytics, data sources, and instrumentation strategies that are essential to data science success. The book will help you accelerate and optimize your company's operations through AI and machine learning. By the end of the book, you will have the tools and techniques to drive your organization's digital transformation. Here are a few words from Dr. Kirk Borne, Data Scientist and Executive Advisor at Booz Allen Hamilton, about the book: "Data analytics should first and foremost be about action and value. Consequently, the great value of this book is that it seeks to be actionable. It offers a dynamic progression of purpose-driven ignition points that you can act upon." What you will learn Train your organization to transition from being data-driven to being value-driven Navigate and master the big data business model maturity index Learn a methodology for determining the economic value of your data and analytics Understand how AI and machine learning can create analytics assets that appreciate in value the more that they are used Become aware of digital transformation misconceptions and pitfalls Create empowered and dynamic teams that fuel your organization's digital transformation Who this book is for This book is designed to benefit everyone from students who aspire to study the economic fundamentals behind data and digital transformation to established business leaders and professionals who want to learn how to leverage data and analytics to accelerate their business careers.




Data Analytics and Digital Transformation


Book Description

Understanding the significance of data analytics is paramount for digital transformation but in many organizations they are separate units without fully aligned goals. As organizations are applying digital transformations to be adaptive and agile in a competitive environment, data analytics can play a critical role in their success. This book explores the crossroads between them and how to leverage their connection for improved business outcomes. The need to collaborate and share data is becoming an integral part of digital transformation. This not only creates new opportunities but also requires well-considered and continuously assessed decision-making as competitiveness is at stake. This book details approaches, concepts, and frameworks, as well as actionable insights and good practices, including combined data management and agile concepts. Critical issues are discussed such as data quality and data governance, as well as compliance, privacy, and ethics. It also offers insights into how both private and public organizations can innovate and keep up with growing data volumes and increasing technological developments in the short, mid, and long term. This book will be of direct appeal to global researchers and students across a range of business disciplines, including technology and innovation management, organizational studies, and strategic management. It is also relevant for policy makers, regulators, and executives of private and public organizations looking to implement successful transformation policies.




Business Models


Book Description

Since the beginning of time, running a business has involved using logic by which the business operates. This logic is called the business model in management science, which increasingly is focusing on issues surrounding business models. Research trends related to business models include value creation, value chain operationalization, and social and ecological aspects, as well as innovation and digital transformation. Business Models: Innovation, Digital Transformation, and Analytics examines how innovation, digital transformation, and the composition of value affect the existence and development of business models. The book starts by addressing the conceptual development of business models and by discussing the essence of innovation in those models. Chapters in the book investigate how: Business models can analyze digital transformation scenarios Individual business model elements effect selected performance measures as well as how the elements are significant for the enterprise value composition The environment effects the profitability of the high-growth enterprise business models Employer branding business models are perceived by the generation Z workforce To implement responsible business models in the enterprise Cyber risk is captured in business models Decision algorithms are important to business analytics This book is a compendium of knowledge about the use of business models in the context of innovative activities, digital transformation, and value composition. It attempts to combine the theory and practice and offers a look at business models currently used in companies, especially high-growth enterprises, in various countries of the world and indicates the prospects for their development.




Internet of Things in Business Transformation


Book Description

The objective of this book is to teach what IoT is, how it works, and how it can be successfully utilized in business. This book helps to develop and implement a powerful IoT strategy for business transformation as well as project execution. Digital change, business creation/change and upgrades in the ways and manners in which we work, live, and engage with our clients and customers, are all enveloped by the Internet of Things which is now named "Industry 5.0" or "Industrial Internet of Things." The sheer number of IoT(a billion+), demonstrates the advent of an advanced business society led by sustainable robotics and business intelligence. This book will be an indispensable asset in helping businesses to understand the new technology and thrive.




Systems of Insight for Digital Transformation: Using IBM Operational Decision Manager Advanced and Predictive Analytics


Book Description

Systems of record (SORs) are engines that generates value for your business. Systems of engagement (SOE) are always evolving and generating new customer-centric experiences and new opportunities to capitalize on the value in the systems of record. The highest value is gained when systems of record and systems of engagement are brought together to deliver insight. Systems of insight (SOI) monitor and analyze what is going on with various behaviors in the systems of engagement and information being stored or transacted in the systems of record. SOIs seek new opportunities, risks, and operational behavior that needs to be reported or have action taken to optimize business outcomes. Systems of insight are at the core of the Digital Experience, which tries to derive insights from the enormous amount of data generated by automated processes and customer interactions. Systems of Insight can also provide the ability to apply analytics and rules to real-time data as it flows within, throughout, and beyond the enterprise (applications, databases, mobile, social, Internet of Things) to gain the wanted insight. Deriving this insight is a key step toward being able to make the best decisions and take the most appropriate actions. Examples of such actions are to improve the number of satisfied clients, identify clients at risk of leaving and incentivize them to stay loyal, identify patterns of risk or fraudulent behavior and take action to minimize it as early as possible, and detect patterns of behavior in operational systems and transportation that lead to failures, delays, and maintenance and take early action to minimize risks and costs. IBM® Operational Decision Manager is a decision management platform that provides capabilities that support both event-driven insight patterns, and business-rule-driven scenarios. It also can easily be used in combination with other IBM Analytics solutions, as the detailed examples will show. IBM Operational Decision Manager Advanced, along with complementary IBM software offerings that also provide capability for systems of insight, provides a way to deliver the greatest value to your customers and your business. IBM Operational Decision Manager Advanced brings together data from different sources to recognize meaningful trends and patterns. It empowers business users to define, manage, and automate repeatable operational decisions. As a result, organizations can create and shape customer-centric business moments. This IBM Redbooks® publication explains the key concepts of systems of insight and how to implement a system of insight solution with examples. It is intended for IT architects and professionals who are responsible for implementing a systems of insights solution requiring event-based context pattern detection and deterministic decision services to enhance other analytics solution components with IBM Operational Decision Manager Advanced.




Digital Transformation and Innovative Services for Business and Learning


Book Description

In a world dependent on digital technologies, business corporations continually try to stay ahead of their competitors by adopting the most updated technology into their business processes. Many companies are adopting digital transformation models, data analytics, big data, data empowerment, and data sharing as key strategies and as service disruptors for information delivery and record management. Higher education institutions have adopted digital service innovation as a core to driving their business processes. Such services are key to ensuring efficiency and improving organizational performance. Digital Transformation and Innovative Services for Business and Learning is a collection of innovative research on the latest digital services and their role in supporting the digital transformation of businesses and education. While highlighting topics including brand equality, digital banking, and generational workforce, this book is ideally designed for managers, executives, IT consultants, industry professionals, academicians, researchers, and students.




Data Strategy


Book Description

BRONZE RUNNER UP: Axiom Awards 2018 - Business Technology Category Less than 0.5 per cent of all data is currently analyzed and used. However, business leaders and managers cannot afford to be unconcerned or sceptical about data. Data is revolutionizing the way we work and it is the companies that view data as a strategic asset that will survive and thrive. Data Strategy is a must-have guide to creating a robust data strategy. Explaining how to identify your strategic data needs, what methods to use to collect the data and, most importantly, how to translate your data into organizational insights for improved business decision-making and performance, this is essential reading for anyone aiming to leverage the value of their business data and gain competitive advantage. Packed with case studies and real-world examples, advice on how to build data competencies in an organization and crucial coverage of how to ensure your data doesn't become a liability, Data Strategy will equip any organization with the tools and strategies it needs to profit from Big Data, analytics and the Internet of Things (IoT).




Data Analytics and AI


Book Description

Analytics and artificial intelligence (AI), what are they good for? The bandwagon keeps answering, absolutely everything! Analytics and artificial intelligence have captured the attention of everyone from top executives to the person in the street. While these disciplines have a relatively long history, within the last ten or so years they have exploded into corporate business and public consciousness. Organizations have rushed to embrace data-driven decision making. Companies everywhere are turning out products boasting that "artificial intelligence is included." We are indeed living in exciting times. The question we need to ask is, do we really know how to get business value from these exciting tools? Unfortunately, both the analytics and AI communities have not done a great job in collaborating and communicating with each other to build the necessary synergies. This book bridges the gap between these two critical fields. The book begins by explaining the commonalities and differences in the fields of data science, artificial intelligence, and autonomy by giving a historical perspective for each of these fields, followed by exploration of common technologies and current trends in each field. The book also readers introduces to applications of deep learning in industry with an overview of deep learning and its key architectures, as well as a survey and discussion of the main applications of deep learning. The book also presents case studies to illustrate applications of AI and analytics. These include a case study from the healthcare industry and an investigation of a digital transformation enabled by AI and analytics transforming a product-oriented company into one delivering solutions and services. The book concludes with a proposed AI-informed data analytics life cycle to be applied to unstructured data.




Data Driven Business Transformation


Book Description

OPTIMIZE YOUR BUSINESS DATA FOR FIRST-CLASS RESULTS Data Driven Business Transformation illustrates how to find the secrets to fast adaptation and disruptive origination hidden in your data and how to use them to capture market share. Digitalisation – or the Digital Revolution – was the first step in an evolving process of analysis and improvement in the operations and administration of commerce. The popular author team of Caroline Carruthers and Peter Jackson, two global leaders in data transformation and education, pick up the conversation here at the next evolutionary step where data from these digital systems generates value, and really use data science to produce tangible results. Optimise the performance of your company through data-driven processes by: Following step-by-step guidance for transitioning your company in the real world to run on a data-enabled business model Mastering a versatile set of data principles powerful enough to produce transformative results at any stage of a business’s development Winning over the hearts of your employees and influencing a cultural shift to a data-enabled business Reading first-hand stories from today’s thought leaders who are shaping data transformation at their companies Enable your company’s data to lift profits with Data Driven Business Transformation.




Handbook of Research on Digital Transformation, Industry Use Cases, and the Impact of Disruptive Technologies


Book Description

Companies from various sectors of the economy are confronted with the new phenomenon of digital transformation and are faced with the challenge of formulating and implementing a company-wide strategy to incorporate what are often viewed as “disruptive” technologies. These technologies are sometimes associated with significant and extremely rapid change, in some cases with even the replacement of established business models. Many of these technologies have been deployed in unison by leading-edge companies acting as the catalyst for significant process change and people skills enhancement. The Handbook of Research on Digital Transformation, Industry Use Cases, and the Impact of Disruptive Technologies examines the phenomenon of digital transformation and the impact of disruptive technologies through the lens of industry case studies where different combinations of these new technologies have been deployed and incorporated into enterprise IT and business strategies. Covering topics including chatbot implementation, multinational companies, cloud computing, internet of things, artificial intelligence, big data and analytics, immersive technologies, and social media, this book is essential for senior management, IT managers, technologists, computer scientists, cybersecurity analysts, academicians, researchers, IT consultancies, professors, and students.