Book Description
A textbook covering data-science and machine learning methods for modelling and control in engineering and science, with Python and MATLAB®.
Author : Steven L. Brunton
Publisher : Cambridge University Press
Page : 615 pages
File Size : 37,38 MB
Release : 2022-05-05
Category : Computers
ISBN : 1009098489
A textbook covering data-science and machine learning methods for modelling and control in engineering and science, with Python and MATLAB®.
Author : Michel Verhaegen
Publisher : Cambridge University Press
Page : 287 pages
File Size : 43,92 MB
Release : 2022-05-12
Category : Technology & Engineering
ISBN : 1316515702
A comprehensive introduction to identifying network-connected systems, covering models and methods, and applications in adaptive optics.
Author : J. Nathan Kutz
Publisher : SIAM
Page : 241 pages
File Size : 15,57 MB
Release : 2016-11-23
Category : Science
ISBN : 1611974496
Data-driven dynamical systems is a burgeoning field?it connects how measurements of nonlinear dynamical systems and/or complex systems can be used with well-established methods in dynamical systems theory. This is a critically important new direction because the governing equations of many problems under consideration by practitioners in various scientific fields are not typically known. Thus, using data alone to help derive, in an optimal sense, the best dynamical system representation of a given application allows for important new insights. The recently developed dynamic mode decomposition (DMD) is an innovative tool for integrating data with dynamical systems theory. The DMD has deep connections with traditional dynamical systems theory and many recent innovations in compressed sensing and machine learning. Dynamic Mode Decomposition: Data-Driven Modeling of Complex Systems, the first book to address the DMD algorithm, presents a pedagogical and comprehensive approach to all aspects of DMD currently developed or under development; blends theoretical development, example codes, and applications to showcase the theory and its many innovations and uses; highlights the numerous innovations around the DMD algorithm and demonstrates its efficacy using example problems from engineering and the physical and biological sciences; and provides extensive MATLAB code, data for intuitive examples of key methods, and graphical presentations.
Author : Rolf Isermann
Publisher : Springer
Page : 705 pages
File Size : 16,2 MB
Release : 2011-04-08
Category : Technology & Engineering
ISBN : 9783540871552
Precise dynamic models of processes are required for many applications, ranging from control engineering to the natural sciences and economics. Frequently, such precise models cannot be derived using theoretical considerations alone. Therefore, they must be determined experimentally. This book treats the determination of dynamic models based on measurements taken at the process, which is known as system identification or process identification. Both offline and online methods are presented, i.e. methods that post-process the measured data as well as methods that provide models during the measurement. The book is theory-oriented and application-oriented and most methods covered have been used successfully in practical applications for many different processes. Illustrative examples in this book with real measured data range from hydraulic and electric actuators up to combustion engines. Real experimental data is also provided on the Springer webpage, allowing readers to gather their first experience with the methods presented in this book. Among others, the book covers the following subjects: determination of the non-parametric frequency response, (fast) Fourier transform, correlation analysis, parameter estimation with a focus on the method of Least Squares and modifications, identification of time-variant processes, identification in closed-loop, identification of continuous time processes, and subspace methods. Some methods for nonlinear system identification are also considered, such as the Extended Kalman filter and neural networks. The different methods are compared by using a real three-mass oscillator process, a model of a drive train. For many identification methods, hints for the practical implementation and application are provided. The book is intended to meet the needs of students and practicing engineers working in research and development, design and manufacturing.
Author : Dhruv Khandelwal
Publisher : Springer Nature
Page : 250 pages
File Size : 50,58 MB
Release : 2022-02-03
Category : Technology & Engineering
ISBN : 3030903435
This book describes a user-friendly, evolutionary algorithms-based framework for estimating data-driven models for a wide class of dynamical systems, including linear and nonlinear ones. The methodology addresses the problem of automating the process of estimating data-driven models from a user’s perspective. By combining elementary building blocks, it learns the dynamic relations governing the system from data, giving model estimates with various trade-offs, e.g. between complexity and accuracy. The evaluation of the method on a set of academic, benchmark and real-word problems is reported in detail. Overall, the book offers a state-of-the-art review on the problem of nonlinear model estimation and automated model selection for dynamical systems, reporting on a significant scientific advance that will pave the way to increasing automation in system identification.
Author : Long Jin
Publisher : Frontiers Media SA
Page : 301 pages
File Size : 35,47 MB
Release : 2024-07-24
Category : Science
ISBN : 2832552013
Neural network control has been a research hotspot in academic fields due to the strong ability of computation. One of its wildly applied fields is robotics. In recent years, plenty of researchers have devised different types of dynamic neural network (DNN) to address complex control issues in robotics fields in reality. Redundant manipulators are no doubt indispensable devices in industrial production. There are various works on the redundancy resolution of redundant manipulators in performing a given task with the manipulator model information known. However, it becomes knotty for researchers to precisely control redundant manipulators with unknown model to complete a cyclic-motion generation CMG task, to some extent. It is worthwhile to investigate the data-driven scheme and the corresponding novel dynamic neural network (DNN), which exploits learning and control simultaneously. Therefore, it is of great significance to further research the special control features and solve challenging issues to improve control performance from several perspectives, such as accuracy, robustness, and solving speed.
Author : Krishna Garikipati
Publisher : Springer Nature
Page : 233 pages
File Size : 28,70 MB
Release :
Category :
ISBN : 3031620291
Author : Honghao Gao
Publisher : Springer Nature
Page : 757 pages
File Size : 23,85 MB
Release : 2022-01-01
Category : Computers
ISBN : 3030926354
This two-volume set constitutes the refereed proceedings of the 17th International Conference on Collaborative Computing: Networking, Applications, and Worksharing, CollaborateCom 2021, held in October 2021. Due to COVID-19 pandemic the conference was held virtually. The 62 full papers and 7 short papers presented were carefully reviewed and selected from 206 submissions. The papers reflect the conference sessions as follows: Optimization for Collaborate System; Optimization based on Collaborative Computing; UVA and Traffic system; Recommendation System; Recommendation System & Network and Security; Network and Security; Network and Security & IoT and Social Networks; IoT and Social Networks & Images handling and human recognition; Images handling and human recognition & Edge Computing; Edge Computing; Edge Computing & Collaborative working; Collaborative working & Deep Learning and application; Deep Learning and application; Deep Learning and application; Deep Learning and application & UVA.
Author : Steven L. Brunton
Publisher : Cambridge University Press
Page : 616 pages
File Size : 31,44 MB
Release : 2022-05-05
Category : Computers
ISBN : 1009115634
Data-driven discovery is revolutionizing how we model, predict, and control complex systems. Now with Python and MATLAB®, this textbook trains mathematical scientists and engineers for the next generation of scientific discovery by offering a broad overview of the growing intersection of data-driven methods, machine learning, applied optimization, and classical fields of engineering mathematics and mathematical physics. With a focus on integrating dynamical systems modeling and control with modern methods in applied machine learning, this text includes methods that were chosen for their relevance, simplicity, and generality. Topics range from introductory to research-level material, making it accessible to advanced undergraduate and beginning graduate students from the engineering and physical sciences. The second edition features new chapters on reinforcement learning and physics-informed machine learning, significant new sections throughout, and chapter exercises. Online supplementary material – including lecture videos per section, homeworks, data, and code in MATLAB®, Python, Julia, and R – available on databookuw.com.
Author : Radu-Emil Precup
Publisher : CRC Press is
Page : 0 pages
File Size : 21,3 MB
Release : 2022
Category : Technology & Engineering
ISBN : 9780367698287
This book categorizes the wide area of data-driven model-free controllers, reveals the exact benefits of such controllers, gives the in-depth theory and mathematical proofs behind them, and finally discusses their applications. Each chapter includes a section for presenting the theory and mathematical definitions of one of the above mentioned algorithms. The second section of each chapter is dedicated to the examples and applications of the corresponding control algorithms in practical engineering problems. This book proposes to avoid complex mathematical equations, being generic as it includes several types of data-driven model-free controllers, such as Iterative Feedback Tuning controllers, Model-Free Controllers (intelligent PID controllers), Model-Free Adaptive Controllers, model-free sliding mode controllers, hybrid model‐free and model‐free adaptive‐Virtual Reference Feedback Tuning controllers, hybrid model-free and model-free adaptive fuzzy controllers and cooperative model-free controllers. The book includes the topic of optimal model-free controllers, as well. The optimal tuning of model-free controllers is treated in the chapters that deal with Iterative Feedback Tuning and Virtual Reference Feedback Tuning. Moreover, the extension of some model-free control algorithms to the consensus and formation-tracking problem of multi-agent dynamic systems is provided. This book can be considered as a textbook for undergraduate and postgraduate students, as well as a professional reference for industrial and academic researchers, attracting the readers from both industry and academia.