Data-Enabled Analytics


Book Description

This book explores the novel uses and potentials of Data Envelopment Analysis (DEA) under big data. These areas are of widespread interest to researchers and practitioners alike. Considering the vast literature on DEA, one could say that DEA has been and continues to be, a widely used technique both in performance and productivity measurement, having covered a plethora of challenges and debates within the modelling framework.




AI-Enabled Analytics for Business


Book Description

We are entering the era of digital transformation where human and artificial intelligence (AI) work hand in hand to achieve data driven performance. Today, more than ever, businesses are expected to possess the talent, tools, processes, and capabilities to enable their organizations to implement and utilize continuous analysis of past business performance and events to gain forward-looking insight to drive business decisions and actions. AI-Enabled Analytics in Business is your Roadmap to meet this essential business capability. To ensure we can plan for the future vs react to the future when it arrives, we need to develop and deploy a toolbox of tools, techniques, and effective processes to reveal forward-looking unbiased insights that help us understand significant patterns, relationships, and trends. This book promotes clarity to enable you to make better decisions from insights about the future. Learn how advanced analytics ensures that your people have the right information at the right time to gain critical insights and performance opportunities Empower better, smarter decision making by implementing AI-enabled analytics decision support tools Uncover patterns and insights in data, and discover facts about your business that will unlock greater performance Gain inspiration from practical examples and use cases showing how to move your business toward AI-Enabled decision making AI-Enabled Analytics in Business is a must-have practical resource for directors, officers, and executives across various functional disciplines who seek increased business performance and valuation.




Cloud Computing Enabled Big-Data Analytics in Wireless Ad-hoc Networks


Book Description

This book discusses intelligent computing through the Internet of Things (IoT) and Big-Data in vehicular environments in a single volume. It covers important topics, such as topology-based routing protocols, heterogeneous wireless networks, security risks, software-defined vehicular ad-hoc networks, vehicular delay tolerant networks, and energy harvesting for WSNs using rectenna. FEATURES Covers applications of IoT in Vehicular Ad-hoc Networks (VANETs) Discusses use of machine learning and other computing techniques for enhancing performance of networks Explains game theory-based vertical handoffs in heterogeneous wireless networks Examines monitoring and surveillance of vehicles through the vehicular sensor network Investigates theoretical approaches on software-defined VANET The book is aimed at graduate students and academic researchers in the fields of electrical engineering, electronics and communication engineering, computer science, and engineering.




Big Data-Enabled Nursing


Book Description

Historically, nursing, in all of its missions of research/scholarship, education and practice, has not had access to large patient databases. Nursing consequently adopted qualitative methodologies with small sample sizes, clinical trials and lab research. Historically, large data methods were limited to traditional biostatical analyses. In the United States, large payer data has been amassed and structures/organizations have been created to welcome scientists to explore these large data to advance knowledge discovery. Health systems electronic health records (EHRs) have now matured to generate massive databases with longitudinal trending. This text reflects how the learning health system infrastructure is maturing, and being advanced by health information exchanges (HIEs) with multiple organizations blending their data, or enabling distributed computing. It educates the readers on the evolution of knowledge discovery methods that span qualitative as well as quantitative data mining, including the expanse of data visualization capacities, are enabling sophisticated discovery. New opportunities for nursing and call for new skills in research methodologies are being further enabled by new partnerships spanning all sectors.




Data Analytics for Intelligent Transportation Systems


Book Description

Data Analytics for Intelligent Transportation Systems provides in-depth coverage of data-enabled methods for analyzing intelligent transportation systems (ITS), including the tools needed to implement these methods using big data analytics and other computing techniques. The book examines the major characteristics of connected transportation systems, along with the fundamental concepts of how to analyze the data they produce. It explores collecting, archiving, processing, and distributing the data, designing data infrastructures, data management and delivery systems, and the required hardware and software technologies. It presents extensive coverage of existing and forthcoming intelligent transportation systems and data analytics technologies. All fundamentals/concepts presented in this book are explained in the context of ITS. Users will learn everything from the basics of different ITS data types and characteristics to how to evaluate alternative data analytics for different ITS applications. They will discover how to design effective data visualizations, tactics on the planning process, and how to evaluate alternative data analytics for different connected transportation applications, along with key safety and environmental applications for both commercial and passenger vehicles, data privacy and security issues, and the role of social media data in traffic planning. Data Analytics for Intelligent Transportation Systems will prepare an educated ITS workforce and tool builders to make the vision for safe, reliable, and environmentally sustainable intelligent transportation systems a reality. It serves as a primary or supplemental textbook for upper-level undergraduate and graduate ITS courses and a valuable reference for ITS practitioners. - Utilizes real ITS examples to facilitate a quicker grasp of materials presented - Contains contributors from both leading academic and commercial domains - Explains how to design effective data visualizations, tactics on the planning process, and how to evaluate alternative data analytics for different connected transportation applications - Includes exercise problems in each chapter to help readers apply and master the learned fundamentals, concepts, and techniques - New to the second edition: Two new chapters on Quantum Computing in Data Analytics and Society and Environment in ITS Data Analytics




AI-Enabled Analytics for Business


Book Description

We are entering the era of digital transformation where human and artificial intelligence (AI) work hand in hand to achieve data driven performance. Today, more than ever, businesses are expected to possess the talent, tools, processes, and capabilities to enable their organizations to implement and utilize continuous analysis of past business performance and events to gain forward-looking insight to drive business decisions and actions. AI-Enabled Analytics in Business is your Roadmap to meet this essential business capability. To ensure we can plan for the future vs react to the future when it arrives, we need to develop and deploy a toolbox of tools, techniques, and effective processes to reveal forward-looking unbiased insights that help us understand significant patterns, relationships, and trends. This book promotes clarity to enable you to make better decisions from insights about the future. Learn how advanced analytics ensures that your people have the right information at the right time to gain critical insights and performance opportunities Empower better, smarter decision making by implementing AI-enabled analytics decision support tools Uncover patterns and insights in data, and discover facts about your business that will unlock greater performance Gain inspiration from practical examples and use cases showing how to move your business toward AI-Enabled decision making AI-Enabled Analytics in Business is a must-have practical resource for directors, officers, and executives across various functional disciplines who seek increased business performance and valuation.




Ethics of Data and Analytics


Book Description

Unique selling point: Applies business ethics to the use of analytics, data, and AI Core audience: Graduate and undergraduate business students Place in the market: Graduate and undergraduate textbook




Business Analytical Capabilities and Artificial Intelligence-enabled Analytics: Applications and Challenges in the Digital Era, Volume 2


Book Description

Zusammenfassung: This book explores and discusses how businesses transit from big data and business analytics to artificial intelligence (AI), by examining advanced technologies and embracing challenges such as ethical issues, governance, security, privacy, and interoperability of capabilities. This book covers a range of topics including the application of cyber accounting and strategic objectives, financial inclusion, big data analytics in telecommunication sector, digital marketing strategies and sports brand loyalty, robotic processes automation in banks, and the applications of AI for decision-making in human resources, healthcare, banking, and many more. The book provides a comprehensive reference for scholars, students, managers, entrepreneurs, and policymakers by examining frameworks and business practice implications through its discussions which embrace a wide variety of unique topics on business analytics, AI, and how it can be applied together to address the challenges of the digital era







Network Data Envelopment Analysis


Book Description

This book presents the underlying theory, model development, and applications of network Data Envelopment Analysis (DEA) in a systematic way. The field of network DEA extends and complements conventional DEA by considering not only inputs and outputs when measuring system efficiency, but also the internal structure of the system being analyzed. By analyzing the efficiency of individual internal components, and more particularly by studying the effects of relationships among components which are modeled and implemented by means of various network structures, the “network DEA” approach is able to help identify and manage the specific components that contribute inefficiencies into the overall systems. This relatively new approach comprises an important analytical tool based on mathematical programming techniques, with valuable implications to production and operations management. The existing models for measuring the efficiency of systems of specific network structures are also discussed, and the relationships between the system and component efficiencies are explored. This book should be able to inspire new research and new applications based on the current state of the art. Performance evaluation is an important task in management, and is needed to (i) better understand the past accomplishments of an organization and (ii) plan for its future development. However, this task becomes rather challenging when multiple performance metrics are involved. DEA is a powerful tool to cope with such issues. For systems or operations composed of interrelated processes, managers need to know how the performances of the various processes evaluated and how they are aggregated to form the overall performance of the system. This book provides an advanced exposition on performance evaluation of systems with network structures. It explores the network nature of most production and operation systems, and explains why network analyses are necessary.