Data Engineering for Smart Systems


Book Description

This book features original papers from the 3rd International Conference on Smart IoT Systems: Innovations and Computing (SSIC 2021), organized by Manipal University, Jaipur, India, during January 22–23, 2021. It discusses scientific works related to data engineering in the context of computational collective intelligence consisted of interaction between smart devices for smart environments and interactions. Thanks to the high-quality content and the broad range of topics covered, the book appeals to researchers pursuing advanced studies.




Emerging Research in Data Engineering Systems and Computer Communications


Book Description

This book gathers selected papers presented at the 2nd International Conference on Computing, Communications and Data Engineering, held at Sri Padmavati Mahila Visvavidyalayam, Tirupati, India from 1 to 2 Feb 2019. Chiefly discussing major issues and challenges in data engineering systems and computer communications, the topics covered include wireless systems and IoT, machine learning, optimization, control, statistics, and social computing.




Pervasive Computing


Book Description

This book provides a concise introduction to Pervasive Computing, otherwise known as Internet of Things (IoT) and Ubiquitous Computing (Ubicomp) which addresses the seamless integration of computing systems within everyday objects. By introducing the core topics and exploring assistive pervasive systems which infer their context through pattern recognition, the author provides readers with a gentle yet robust foundation of knowledge to this growing field of research. The author explores a range of topics including data acquisition, signal processing, control theory, machine learning and system engineering explaining, with the use of simple mathematical concepts, the core principles underlying pervasive computing systems. Real-life examples are applied throughout, including self-driving cars, automatic insulin pumps, smart homes, and social robotic companions, with each chapter accompanied by a set of exercises for the reader. Practical tutorials are also available to guide enthusiastic readers through the process of building a smart system using cameras, microphones and robotic kits. Due to the power of MATLABTM, this can be achieved with no previous programming or robotics experience. Although Pervasive Computing is primarily for undergraduate students, the book is accessible to a wider audience of researchers and designers who are interested in exploring pervasive computing further.




Smart Systems Design, Applications, and Challenges


Book Description

Smart systems when connected to artificial intelligence (AI) are still closely associated with some popular misconceptions that cause the general public to either have unrealistic fears about AI or to expect too much about how it will change our workplace and life in general. It is important to show that such fears are unfounded, and that new trends, technologies, and smart systems will be able to improve the way we live, benefiting society without replacing humans in their core activities. Smart Systems Design, Applications, and Challenges provides emerging research that presents state-of-the-art technologies and available systems in the domains of smart systems and AI and explains solutions from an augmented intelligence perspective, showing that these technologies can be used to benefit, instead of replace, humans by augmenting the information and actions of their daily lives. The book addresses all smart systems that incorporate functions of sensing, actuation, and control in order to describe and analyze a situation and make decisions based on the available data in a predictive or adaptive manner. Highlighting a broad range of topics such as business intelligence, cloud computing, and autonomous vehicles, this book is ideally designed for engineers, investigators, IT professionals, researchers, developers, data analysts, professors, and students.




Recent Advances in Artificial Intelligence and Data Engineering


Book Description

This book presents select proceedings of the International Conference on Artificial Intelligence and Data Engineering (AIDE 2020). Various topics covered in this book include deep learning, neural networks, machine learning, computational intelligence, cognitive computing, fuzzy logic, expert systems, brain-machine interfaces, ant colony optimization, natural language processing, bioinformatics and computational biology, cloud computing, machine vision and robotics, ambient intelligence, intelligent transportation, sensing and sensor networks, big data challenge, data science, high performance computing, data mining and knowledge discovery, and data privacy and security. The book will be a valuable reference for beginners, researchers, and professionals interested in artificial intelligence, robotics and data engineering.




Data Analytics for Intelligent Transportation Systems


Book Description

Data Analytics for Intelligent Transportation Systems provides in-depth coverage of data-enabled methods for analyzing intelligent transportation systems that includes detailed coverage of the tools needed to implement these methods using big data analytics and other computing techniques. The book examines the major characteristics of connected transportation systems, along with the fundamental concepts of how to analyze the data they produce. It explores collecting, archiving, processing, and distributing the data, designing data infrastructures, data management and delivery systems, and the required hardware and software technologies. Users will learn how to design effective data visualizations, tactics on the planning process, and how to evaluate alternative data analytics for different connected transportation applications, along with key safety and environmental applications for both commercial and passenger vehicles, data privacy and security issues, and the role of social media data in traffic planning. - Includes case studies in each chapter that illustrate the application of concepts covered - Presents extensive coverage of existing and forthcoming intelligent transportation systems and data analytics technologies - Contains contributors from both leading academic and commercial researchers - Explains how to design effective data visualizations, tactics on the planning process, and how to evaluate alternative data analytics for different connected transportation applications




Data Engineering and Intelligent Computing


Book Description

The book is a compilation of high-quality scientific papers presented at the 3rd International Conference on Computer & Communication Technologies (IC3T 2016). The individual papers address cutting-edge technologies and applications of soft computing, artificial intelligence and communication. In addition, a variety of further topics are discussed, which include data mining, machine intelligence, fuzzy computing, sensor networks, signal and image processing, human-computer interaction, web intelligence, etc. As such, it offers readers a valuable and unique resource.




Proceedings of the International Conference on Data Engineering and Communication Technology


Book Description

This two-volume book contains research work presented at the First International Conference on Data Engineering and Communication Technology (ICDECT) held during March 10–11, 2016 at Lavasa, Pune, Maharashtra, India. The book discusses recent research technologies and applications in the field of Computer Science, Electrical and Electronics Engineering. The aim of the Proceedings is to provide cutting-edge developments taking place in the field data engineering and communication technologies which will assist the researchers and practitioners from both academia as well as industry to advance their field of study.




Nanotechnology


Book Description

This reference text discusses recent advances in the field of nanotechnology with applications in the fields of electronics sector, agriculture, health services, smart cities, food industry, and energy sector in a comprehensive manner. The text begins by discussing important concepts including bio nanotechnology, nano electronics, nano devices, nano medicine, and nano memories. It then comprehensively covers applications of nanotechnology in different areas including healthcare, energy sector, environment, security and defense, agriculture sector, food industry, automotive sector, smart cities, and Internet of Things (IoT). Aimed at senior undergraduate, graduate students and professionals in the fields of electrical engineering, electronics engineering, nanoscience and nanotechnology, this text: Discusses nano image sensors useful for imaging in medical and for security applications. Covers advances in the field of nanotechnology with their applications. It covers important concepts including neuro simulators, nano medicine, and nano materials. Covers applications of nanotechnology in diverse fields including health sector, agriculture, energy sector, and electronics.




Data Smart


Book Description

Data Science gets thrown around in the press like it'smagic. Major retailers are predicting everything from when theircustomers are pregnant to when they want a new pair of ChuckTaylors. It's a brave new world where seemingly meaningless datacan be transformed into valuable insight to drive smart businessdecisions. But how does one exactly do data science? Do you have to hireone of these priests of the dark arts, the "data scientist," toextract this gold from your data? Nope. Data science is little more than using straight-forward steps toprocess raw data into actionable insight. And in DataSmart, author and data scientist John Foreman will show you howthat's done within the familiar environment of aspreadsheet. Why a spreadsheet? It's comfortable! You get to look at the dataevery step of the way, building confidence as you learn the tricksof the trade. Plus, spreadsheets are a vendor-neutral place tolearn data science without the hype. But don't let the Excel sheets fool you. This is a book forthose serious about learning the analytic techniques, the math andthe magic, behind big data. Each chapter will cover a different technique in aspreadsheet so you can follow along: Mathematical optimization, including non-linear programming andgenetic algorithms Clustering via k-means, spherical k-means, and graphmodularity Data mining in graphs, such as outlier detection Supervised AI through logistic regression, ensemble models, andbag-of-words models Forecasting, seasonal adjustments, and prediction intervalsthrough monte carlo simulation Moving from spreadsheets into the R programming language You get your hands dirty as you work alongside John through eachtechnique. But never fear, the topics are readily applicable andthe author laces humor throughout. You'll even learnwhat a dead squirrel has to do with optimization modeling, whichyou no doubt are dying to know.