Data Jujitsu


Book Description

Acclaimed data scientist DJ Patil details a new approach to solving problems in Data Jujitsu. Learn how to use a problem's "weight" against itself to: Break down seemingly complex data problems into simplified parts Use alternative data analysis techniques to examine them Use human input, such as Mechanical Turk, and design tricks that enlist the help of your users to take short cuts around tough problems Learn more about the problems before starting on the solutions-and use the findings to solve them, or determine whether the problems are worth solving at all.




Data Jujitsu: The Art of Turning Data into Product


Book Description

Acclaimed data scientist DJ Patil details a new approach to solving problems in Data Jujitsu. Learn how to use a problem's "weight" against itself to: Break down seemingly complex data problems into simplified parts Use alternative data analysis techniques to examine them Use human input, such as Mechanical Turk, and design tricks that enlist the help of your users to take short cuts around tough problems Learn more about the problems before starting on the solutions—and use the findings to solve them, or determine whether the problems are worth solving at all.




Data Jujitsu


Book Description




Data Jujitsu


Book Description

Acclaimed data scientist DJ Patil details a new approach to solving problems in Data Jujitsu.Learn how to use a problem's "weight" against itself to: Break down seemingly complex data problems into simplified parts Use alternative data analysis techniques to examine them Use human input, such as Mechanical Turk, and design tricks that enlist the help of your users to take short cuts around tough problemsLearn more about the problems before starting on the solutions—and use the findings to solve them, or determine whether the problems are worth solving at all.




Building Data Science Teams


Book Description

As data science evolves to become a business necessity, the importance of assembling a strong and innovative data teams grows. In this in-depth report, data scientist DJ Patil explains the skills, perspectives, tools and processes that position data science teams for success. Topics include: What it means to be "data driven." The unique roles of data scientists. The four essential qualities of data scientists. Patil's first-hand experience building the LinkedIn data science team.




Data Driven


Book Description

Succeeding with data isn’t just a matter of putting Hadoop in your machine room, or hiring some physicists with crazy math skills. It requires you to develop a data culture that involves people throughout the organization. In this O’Reilly report, DJ Patil and Hilary Mason outline the steps you need to take if your company is to be truly data-driven—including the questions you should ask and the methods you should adopt. You’ll not only learn examples of how Google, LinkedIn, and Facebook use their data, but also how Walmart, UPS, and other organizations took advantage of this resource long before the advent of Big Data. No matter how you approach it, building a data culture is the key to success in the 21st century. You’ll explore: Data scientist skills—and why every company needs a Spock How the benefits of giving company-wide access to data outweigh the costs Why data-driven organizations use the scientific method to explore and solve data problems Key questions to help you develop a research-specific process for tackling important issues What to consider when assembling your data team Developing processes to keep your data team (and company) engaged Choosing technologies that are powerful, support teamwork, and easy to use and learn




Ethics and Data Science


Book Description

As the impact of data science continues to grow on society there is an increased need to discuss how data is appropriately used and how to address misuse. Yet, ethical principles for working with data have been available for decades. The real issue today is how to put those principles into action. With this report, authors Mike Loukides, Hilary Mason, and DJ Patil examine practical ways for making ethical data standards part of your work every day. To help you consider all of possible ramifications of your work on data projects, this report includes: A sample checklist that you can adapt for your own procedures Five framing guidelines (the Five C’s) for building data products: consent, clarity, consistency, control, and consequences Suggestions for building ethics into your data-driven culture Now is the time to invest in a deliberate practice of data ethics, for better products, better teams, and better outcomes. Get a copy of this report and learn what it takes to do good data science today.




Designing Virtual Worlds


Book Description

This text provides a comprehensive treatment of virtual world design from one of its pioneers. It covers everything from MUDs to MOOs to MMORPGs, from text-based to graphical VWs.




The Art of Learning


Book Description

An eight-time national chess champion and world champion martial artist shares the lessons he has learned from two very different competitive arenas, identifying key principles about learning and performance that readers can apply to their life goals. Reprint. 35,000 first printing.




Pragmatic AI


Book Description

Master Powerful Off-the-Shelf Business Solutions for AI and Machine Learning Pragmatic AI will help you solve real-world problems with contemporary machine learning, artificial intelligence, and cloud computing tools. Noah Gift demystifies all the concepts and tools you need to get results—even if you don’t have a strong background in math or data science. Gift illuminates powerful off-the-shelf cloud offerings from Amazon, Google, and Microsoft, and demonstrates proven techniques using the Python data science ecosystem. His workflows and examples help you streamline and simplify every step, from deployment to production, and build exceptionally scalable solutions. As you learn how machine language (ML) solutions work, you’ll gain a more intuitive understanding of what you can achieve with them and how to maximize their value. Building on these fundamentals, you’ll walk step-by-step through building cloud-based AI/ML applications to address realistic issues in sports marketing, project management, product pricing, real estate, and beyond. Whether you’re a business professional, decision-maker, student, or programmer, Gift’s expert guidance and wide-ranging case studies will prepare you to solve data science problems in virtually any environment. Get and configure all the tools you’ll need Quickly review all the Python you need to start building machine learning applications Master the AI and ML toolchain and project lifecycle Work with Python data science tools such as IPython, Pandas, Numpy, Juypter Notebook, and Sklearn Incorporate a pragmatic feedback loop that continually improves the efficiency of your workflows and systems Develop cloud AI solutions with Google Cloud Platform, including TPU, Colaboratory, and Datalab services Define Amazon Web Services cloud AI workflows, including spot instances, code pipelines, boto, and more Work with Microsoft Azure AI APIs Walk through building six real-world AI applications, from start to finish Register your book for convenient access to downloads, updates, and/or corrections as they become available. See inside book for details.