Reliability and Failure of Electronic Materials and Devices


Book Description

Reliability and Failure of Electronic Materials and Devices is a well-established and well-regarded reference work offering unique, single-source coverage of most major topics related to the performance and failure of materials used in electronic devices and electronics packaging. With a focus on statistically predicting failure and product yields, this book can help the design engineer, manufacturing engineer, and quality control engineer all better understand the common mechanisms that lead to electronics materials failures, including dielectric breakdown, hot-electron effects, and radiation damage. This new edition adds cutting-edge knowledge gained both in research labs and on the manufacturing floor, with new sections on plastics and other new packaging materials, new testing procedures, and new coverage of MEMS devices. Covers all major types of electronics materials degradation and their causes, including dielectric breakdown, hot-electron effects, electrostatic discharge, corrosion, and failure of contacts and solder joints New updated sections on "failure physics," on mass transport-induced failure in copper and low-k dielectrics, and on reliability of lead-free/reduced-lead solder connections New chapter on testing procedures, sample handling and sample selection, and experimental design Coverage of new packaging materials, including plastics and composites




Defects in Advanced Electronic Materials and Novel Low Dimensional Structures


Book Description

Defects in Advanced Electronic Materials and Novel Low Dimensional Structures provides a comprehensive review on the recent progress in solving defect issues and deliberate defect engineering in novel material systems. It begins with an overview of point defects in ZnO and group-III nitrides, including irradiation-induced defects, and then look at defects in one and two-dimensional materials, including carbon nanotubes and graphene. Next, it examines the ways that defects can expand the potential applications of semiconductors, such as energy upconversion and quantum processing. The book concludes with a look at the latest advances in theory. While defect physics is extensively reviewed for conventional bulk semiconductors, the same is far from being true for novel material systems, such as low-dimensional 1D and 0D nanostructures and 2D monolayers. This book fills that necessary gap. Presents an in-depth overview of both conventional bulk semiconductors and low-dimensional, novel material systems, such as 1D structures and 2D monolayers Addresses a range of defects in a variety of systems, providing a comparative approach Includes sections on advances in theory that provide insights on where this body of research might lead




Advanced Calculations for Defects in Materials


Book Description

This book investigates the possible ways of improvement by applying more sophisticated electronic structure methods as well as corrections and alternatives to the supercell model. In particular, the merits of hybrid and screened functionals, as well as of the +U methods are assessed in comparison to various perturbative and Quantum Monte Carlo many body theories. The inclusion of excitonic effects is also discussed by way of solving the Bethe-Salpeter equation or by using time-dependent DFT, based on GW or hybrid functional calculations. Particular attention is paid to overcome the side effects connected to finite size modeling. The editors are well known authorities in this field, and very knowledgeable of past developments as well as current advances. In turn, they have selected respected scientists as chapter authors to provide an expert view of the latest advances. The result is a clear overview of the connections and boundaries between these methods, as well as the broad criteria determining the choice between them for a given problem. Readers will find various correction schemes for the supercell model, a description of alternatives by applying embedding techniques, as well as algorithmic improvements allowing the treatment of an ever larger number of atoms at a high level of sophistication.







Defects in Electronic Materials II: Volume 442


Book Description

The pervasive role of defects in determining the thermal, mechanical, electrical, optical and magnetic properties of materials is significant as is the knowledge and operation of generation and control of defects in electronic materials. Developing novel semiconductor materials, however, requires new insights into the role of defects to achieve new properties. New experimental techniques must be developed to study defects in small structures. Research groups come together in this book from MRS to provide a vivid picture of the current problems, progress and methods in defect studies in electronic materials. Topics include new techniques in defect studies; processing induced defects, plasma-induced point defects; processing induced defects -defects and gate-oxide integrity; point defects and reaction; point defects and interactions in Si; impurity diffusion and hydrogen in Si; dislocations in group IV semiconductors; point defects and defect interactions in SiGe; point defects in III-V compounds; compensation and structural defects in III-V compounds and layers and structures.







Materials Research Society Symposium Proceedings. Volume 442. Defects in Electronic Materials II. December 2-6, 1996, Boston, Massachusetts


Book Description

This proceedings volume contains oral and poster contributions from a symposium on "Defects in Electronic Materials" at the combined meeting of the Materials Research Society (MRS) and the International Conference on Electronic Materials (ICEM) in December, 1996, in Boston. The volume comprises the areas of defects in group III-V, and wide bandgap semiconductors. The symposium was planned to represent the general field of defects in electronic materials, with a focus on issues that are currently widely discussed. The pervasive role of defects in determining the thermal, mechanical, electrical, optical and magnetic properties of materials is significant. The knowledge of generation and control of defects in electronic materials has contributed to the success of these materials. Developing novel semiconductor materials requires new insights into the role of defects to achieve new properties. New experimental techniques have to be developed to study defects in small structures, This proceedings volume provides a vivid picture of the current problems, progress and methods in defect studies in electronic materials. Of most interest were the sessions on new techniques in defect studies and on process-induced defects in Si and GaAs. Papers on new techniques addressed the issues of surface defects, defects in small dimensions and the detection of near-surface defects in Si. In process-induced defects, three areas received significant attention, Plasma processes in Si and GaAs produce defective layers. Many papers deal with the understanding of these defects. Grown-in defects are widely studied because of their deteriorating effect on the gate-oxide integrity (GOI). These defects were identified as octahedral voids in as-grown silicon. Another recurring issue is gettering of metallic impurities to prevent contamination during processing.




Extended Defects in Semiconductors


Book Description

Covering topics that are especially important in electronic device development, this book surveys the properties, effects, roles and characterization of structurally extended defects in semiconductors. The basic properties of extended defects are outlined, and their effect on the electronic properties of semiconductors, their role in semiconductor devices, and techniques for their characterization are discussed. This text is suitable for advanced undergraduate and graduate students in materials science and engineering, and for those studying semiconductor physics.




Defects in Microelectronic Materials and Devices


Book Description

Uncover the Defects that Compromise Performance and ReliabilityAs microelectronics features and devices become smaller and more complex, it is critical that engineers and technologists completely understand how components can be damaged during the increasingly complicated fabrication processes required to produce them.A comprehensive survey of defe




Theory of Defects in Solids


Book Description

This book surveys the theory of defects in solids, concentrating on the electronic structure of point defects in insulators and semiconductors. The relations between different approaches are described, and the predictions of the theory compared critically with experiment. The physical assumptions and approximations are emphasized. The book begins with the perfect solid, then reviews the main methods of calculating defect energy levels and wave functions. The calculation and observable defect properties is discussed, and finally, the theory is applied to a range of defects that are very different in nature. This book is intended for research workers and graduate students interested in solid-state physics. From reviews of the hardback: 'It is unique and of great value to all interested in the basic aspects of defects in solids.' Physics Today 'This is a particularly worthy book, one which has long been needed by the theoretician and experimentalist alike.' Nature