Definition of the Engineering Method


Book Description

In an effort to more clearly define the engineering method, this document attempts to draw distinctions between engineering and science. Part I, "Some Thoughts on Engineering," discusses strategies that engineers employ to solve problems, and the characteristics of the types of engineering problems. Part II, "The Principal Rule of the Engineering Method," gives a definition of the engineering method and provides examples which: (1) compare individual engineers; (2) establish a rule for judging the performance of an engineer; (3) compare the technological developments of various nations; (4) analyze several pedagogical strategies of engineering education; and (5) define the relationship between the engineer and society. Part III, "Some Heuristics Used by the Engineering Method," includes some simple rules of thumb, factors about safety, heuristics that affect the engineer's attitude toward his/her work, heuristics that engineers use to keep risk within acceptable bounds, and factors dealing with resource allocation. (TW)




Engineering Methods in the Service-Oriented Context


Book Description

This book constitutes the refereed proceedings of the 4th IFIP WG 8.1 Working Conference on Method Engineering, ME 2011, held in Paris, France, in April 2011. The 13 revised full papers and 6 short papers presented together with the abstracts of two keynote talks were carefully reviewed and selected from 30 submissions. The papers are organized in topical sections on situated method engineering, method engineering foundations, customized methods, tools for method engineering, new trends to build methods, and method engineering services.




Design Methodology in Rock Engineering


Book Description

The first comprehensive treatment of the subject of design methodology in rock engineering, this book emphasizes that a good designer needs not only knowledge for designing (technical knowledge) but also must have knowledge about designing (an appropriate process to follow). Design methodology is today recognized in most fields as crucial to the success of a new product, process, or construction project. This unique book starts with an appraisal of current trends concerning global design activities and competitiveness and gives an insight into how designers design. The state of the art in engineering design is given with a detailed exposé of all significant design theories and methodologies. It then presents a design methodology specifically for rock engineering and demonstrates its practical use on the basis of important case histories. To preserve the momentum of the design message, design education is also discussed. A separate chapter is devoted to skills development, presenting the designer with an extensive repertoire of widely available tools and concepts. The Appendix lists a compendium of useful design charts for rock engineering, traced after a thorough literature search. A Bibliography concludes the book with an up-to-date list of references.




Site Reliability Engineering


Book Description

The overwhelming majority of a software system’s lifespan is spent in use, not in design or implementation. So, why does conventional wisdom insist that software engineers focus primarily on the design and development of large-scale computing systems? In this collection of essays and articles, key members of Google’s Site Reliability Team explain how and why their commitment to the entire lifecycle has enabled the company to successfully build, deploy, monitor, and maintain some of the largest software systems in the world. You’ll learn the principles and practices that enable Google engineers to make systems more scalable, reliable, and efficient—lessons directly applicable to your organization. This book is divided into four sections: Introduction—Learn what site reliability engineering is and why it differs from conventional IT industry practices Principles—Examine the patterns, behaviors, and areas of concern that influence the work of a site reliability engineer (SRE) Practices—Understand the theory and practice of an SRE’s day-to-day work: building and operating large distributed computing systems Management—Explore Google's best practices for training, communication, and meetings that your organization can use




Kansei/Affective Engineering


Book Description

A guided tour through the each stages of process, Kansei/Affective Engineering explores how to apply Kansei/Affective Engineering. It describes the psychological survey and psycho-physiological measurement of consumer feelings and the multivariate statistical analysis of this survey data, including rough set models. Since soft computing technology




A Framework for K-12 Science Education


Book Description

Science, engineering, and technology permeate nearly every facet of modern life and hold the key to solving many of humanity's most pressing current and future challenges. The United States' position in the global economy is declining, in part because U.S. workers lack fundamental knowledge in these fields. To address the critical issues of U.S. competitiveness and to better prepare the workforce, A Framework for K-12 Science Education proposes a new approach to K-12 science education that will capture students' interest and provide them with the necessary foundational knowledge in the field. A Framework for K-12 Science Education outlines a broad set of expectations for students in science and engineering in grades K-12. These expectations will inform the development of new standards for K-12 science education and, subsequently, revisions to curriculum, instruction, assessment, and professional development for educators. This book identifies three dimensions that convey the core ideas and practices around which science and engineering education in these grades should be built. These three dimensions are: crosscutting concepts that unify the study of science through their common application across science and engineering; scientific and engineering practices; and disciplinary core ideas in the physical sciences, life sciences, and earth and space sciences and for engineering, technology, and the applications of science. The overarching goal is for all high school graduates to have sufficient knowledge of science and engineering to engage in public discussions on science-related issues, be careful consumers of scientific and technical information, and enter the careers of their choice. A Framework for K-12 Science Education is the first step in a process that can inform state-level decisions and achieve a research-grounded basis for improving science instruction and learning across the country. The book will guide standards developers, teachers, curriculum designers, assessment developers, state and district science administrators, and educators who teach science in informal environments.




Bartholomew and the Oobleck


Book Description

Join Bartholomew Cubbins in Dr. Seuss’s Caldecott Honor–winning picture book about a king’s magical mishap! Bored with rain, sunshine, fog, and snow, King Derwin of Didd summons his royal magicians to create something new and exciting to fall from the sky. What he gets is a storm of sticky green goo called Oobleck—which soon wreaks havock all over his kingdom! But with the assistance of the wise page boy Bartholomew, the king (along with young readers) learns that the simplest words can sometimes solve the stickiest problems.




Critical Perspectives on Nonacademic Science and Engineering


Book Description

This volume is an attempt to get philosophers to concentrate on what scientists and engineers actually do.




Model-based System and Architecture Engineering with the Arcadia Method


Book Description

Arcadia is a system engineering method based on the use of models, with a focus on the collaborative definition, evaluation and exploitation of its architecture. This book describes the fundamentals of the method and its contribution to engineering issues such as requirements management, product line, system supervision, and integration, verification and validation (IVV). It provides a reference for the modeling language defined by Arcadia. The author discusses the range of applications, from the assessment of different architectures and their suitability, to the collaboration between system engineering, specialties such as safety or security, subsystems engineering teams, software and hardware. This is illustrated by several examples of representative models which constitute a common thread. - Offers a comprehensive examination of systems engineering, including the use of models to support it - Not only yet another book on modeling, but rather a journey in systems engineering, enlightening the use of models to support it. - Focuses on solitary modeling tasks while also covering prime collaborations between engineering stakeholders - Examines modeling techniques to capture and share architecture and to early verify it against need and non-functional constraints - Addresses subjects not usually covered by model-based system engineering (MBSE) methods, such as co-engineering with specialties, system/sub-system co-engineering, integration verification and validation - Features a powerful, dedicated tool (Capella) - Covers a range of topics, including an introduction to system engineering issues, an introduction to MBSE, a presentation of the method for beginners and a handy reference manual for advanced users




Graph Transformations and Model-Driven Engineering


Book Description

This festschrift volume, published in honor of Manfred Nagl on the occasion of his 65th birthday, contains 30 refereed contributions, that cover graph transformations, software architectures and reengineering, embedded systems engineering, and more.