Deformable Bodies and Their Material Behavior


Book Description

ESSENTIAL TOOLS FOR AVOIDING MATERIAL FUNCTIONAL FAILURE Offering comprehensive, organized, and detailed coverage, Henry Haslach and Ronald Armstrong’s Deformable Bodies and Their Material Behavior present a quantitative description of the mechanical behavior of a broad range of deformable bodies under widely differing conditions and at a level sufficient to match real behavior, and introduces the key tools needed to avoid material functional failure. Covering stress and deformation analysis, material failure modes, and mechanical rest evaluations of material properties, this text provides the tools, insights, and knowledge needed to build a strong foundation for the design of mechanical devices. HIGHLIGHTS Considers most types of materials: metals, ceramics, fibered composites, concrete biological tissue, rubber, polymers, and wood. Focuses on the relationships between material properties of a deformable body and the forces and displacements applied to its boundary. Helps develop an appreciation for the approximations made in producing the mathematical models intended to predict mechanical response. Provides historical background on the definitions and models that designers commonly use, describing the practical reasons why these tools were invented.




Fundamentals of Biomechanics


Book Description

Extensively revised from a successful first edition, this book features a wealth of clear illustrations, numerous worked examples, and many problem sets. It provides the quantitative perspective missing from more descriptive texts, without requiring an advanced background in mathematics, and as such will be welcomed for use in courses such as biomechanics and orthopedics, rehabilitation and industrial engineering, and occupational or sports medicine.




Fundamentals of the Three-Dimensional Theory of Stability of Deformable Bodies


Book Description

At the present time stability theory of deformable systems has been developed into a manifold field within solid mechanics with methods, techniques and approaches of its own. We can hardly name a branch of industry or civil engineering where the results of the stability theory have not found their application. This extensive development together with engineering applications are reflected in a flurry of papers appearing in periodicals as well as in a plenty of monographs, textbooks and reference books. In so doing, overwhelming majority of researchers, con cerned with the problems of practical interest, have dealt with the loss of stability in the thin-walled structural elements. Trying to simplify solution of the problems, they have used two- and one-dimensional theories based on various auxiliary hypotheses. This activity contributed a lot to the preferential development of the stability theory of thin-walled structures and organisation of this theory into a branch of solid mechanics with its own up-to-date methods and trends, but left three-dimensional linearised theory of deformable bodies stability (TL TDBS), methods of solving and solutions of the three-dimensional stability problems themselves almost without attention. It must be emphasised that by three dimensional theories and problems in this book are meant those theories and problems which do not draw two-dimensional plate and shell and one-dimensional rod theories.




Applied Mechanics of Solids


Book Description

Modern computer simulations make stress analysis easy. As they continue to replace classical mathematical methods of analysis, these software programs require users to have a solid understanding of the fundamental principles on which they are based.Develop Intuitive Ability to Identify and Avoid Physically Meaningless PredictionsApplied Mechanics o




Analysis of Engineering Structures and Material Behavior


Book Description

Theoretical and experimental study of the mechanical behavior of structures under load Analysis of Engineering Structures and Material Behavior is a textbook covering introductory and advanced topics in structural analysis. It begins with an introduction to the topic, before covering fundamental concepts of stress, strain and information about mechanical testing of materials. Material behaviors, yield criteria and loads imposed on the engineering elements are also discussed. The book then moves on to cover more advanced areas including relationships between stress and strain, rheological models, creep of metallic materials and fracture mechanics. Finally, the finite element method and its applications are considered. Key features: Covers introductory and advanced topics in structural analysis, including load, stress, strain, creep, fatigue and finite element analysis of structural elements. Includes examples and considers mathematical formulations. A pedagogical approach to the topic. Analysis of Engineering Structures and Material Behavior is suitable as a textbook for structural analysis and mechanics courses in structural, civil and mechanical engineering, as well as a valuable guide for practicing engineers.




Mechanics of Solid Deformable Body


Book Description

This textbook contains sections with fundamental, classical knowledge in solid mechanics, as well as original modern mathematical models to describe the state and behavior of solid deformable bodies. It has original sections with the basics of mathematical modeling in the solid mechanics, material on the basic principles, and features of mathematical formulation of model problems of solid mechanics. For successful mastering of the material, it is necessary to have basic knowledge of the relevant sections of the courses of mathematical analysis, linear algebra and tensor analysis, differential equations, and equations of mathematical physics. Each section contains a list of test questions and exercises to check the level of assimilation of the material. The textbook is intended for senior university students, postgraduates, and research fellows. It can be used in the study of general and special disciplines in various sections of solid mechanics, applied mechanics for students and undergraduates of various specializations and specialties, such as mechanics and mathematical modeling, applied mathematics, solid physics, and engineering mechanics.







Mechanics of Materials


Book Description

The fourth edition of Mechanics of Materials is an in-depth yet accessible introduction to the behavior of solid materials under various stresses and strains. Emphasizing the three key concepts of deformable-body mechanics—equilibrium, material behavior, and geometry of deformation—this popular textbook covers the fundamental concepts of the subject while helping students strengthen their problem-solving skills. Throughout the text, students are taught to apply an effective four-step methodology to solve numerous example problems and understand the underlying principles of each application. Focusing primarily on the behavior of solids under static-loading conditions, the text thoroughly prepares students for subsequent courses in solids and structures involving more complex engineering analyses and Computer-Aided Engineering (CAE). The text provides ample, fully solved practice problems, real-world engineering examples, the equations that correspond to each concept, chapter summaries, procedure lists, illustrations, flow charts, diagrams, and more. This updated edition includes new Python computer code examples, problems, and homework assignments that require only basic programming knowledge.




Finite Element Simulations with ANSYS Workbench 17


Book Description

Finite Element Simulations with ANSYS Workbench 17 is a comprehensive and easy to understand workbook. Printed in full color, it utilizes rich graphics and step-by-step instructions to guide you through learning how to perform finite element simulations using ANSYS Workbench. Twenty seven real world case studies are used throughout the book. Many of these case studies are industrial or research projects that you build from scratch. Prebuilt project files are available for download should you run into any problems. Companion videos, that demonstrate exactly how to perform each tutorial, are also available Relevant background knowledge is reviewed whenever necessary. To be efficient, the review is conceptual rather than mathematical. Key concepts are inserted whenever appropriate and summarized at the end of each chapter. Additional exercises or extension research problems are provided as homework at the end of each chapter. A learning approach emphasizing hands-on experiences spreads though this entire book. A typical chapter consists of 6 sections. The first two provide two step-by-step examples. The third section tries to complement the exercises by providing a more systematic view of the chapter subject. The following two sections provide more exercises. The final section provides review problems.




Mechanics of Materials For Dummies


Book Description

Your ticket to excelling in mechanics of materials With roots in physics and mathematics, engineering mechanics is the basis of all the mechanical sciences: civil engineering, materials science and engineering, mechanical engineering, and aeronautical and aerospace engineering. Tracking a typical undergraduate course, Mechanics of Materials For Dummies gives you a thorough introduction to this foundational subject. You'll get clear, plain-English explanations of all the topics covered, including principles of equilibrium, geometric compatibility, and material behavior; stress and its relation to force and movement; strain and its relation to displacement; elasticity and plasticity; fatigue and fracture; failure modes; application to simple engineering structures, and more. Tracks to a course that is a prerequisite for most engineering majors Covers key mechanics concepts, summaries of useful equations, and helpful tips From geometric principles to solving complex equations, Mechanics of Materials For Dummies is an invaluable resource for engineering students!