Design and Control of Automotive Propulsion Systems


Book Description

Better Understand the Relationship between Powertrain System Design and Its Control IntegrationWhile powertrain system design and its control integration are traditionally divided into two different functional groups, a growing trend introduces the integration of more electronics (sensors, actuators, and controls) into the powertrain system.




Design and Control of Automotive Propulsion Systems


Book Description

Better Understand the Relationship between Powertrain System Design and Its Control Integration While powertrain system design and its control integration are traditionally divided into two different functional groups, a growing trend introduces the integration of more electronics (sensors, actuators, and controls) into the powertrain system. This has impacted the dynamics of the system, changing the traditional mechanical powertrain into a mechatronic powertrain, and creating new opportunities for improved efficiency. Design and Control of Automotive Propulsion Systemsfocuses on the ICE-based automotive powertrain system (while presenting the alternative powertrain systems where appropriate). Factoring in the multidisciplinary nature of the automotive propulsion system, this text does two things--adopts a holistic approach to the subject, especially focusing on the relationship between propulsion system design and its dynamics and electronic control, and covers all major propulsion system components, from internal combustion engines to transmissions and hybrid powertrains. The book introduces the design, modeling, and control of the current automotive propulsion system, and addresses all three major subsystems: system level optimization over engines, transmissions, and hybrids (necessary for improving propulsion system efficiency and performance). It provides examples for developing control-oriented models for the engine, transmission, and hybrid. It presents the design principles for the powertrain and its key subsystems. It also includes tools for developing control systems and examples on integrating sensors, actuators, and electronic control to improve powertrain efficiency and performance. In addition, it presents analytical and experimental methods, explores recent achievements, and discusses future trends. Comprised of five chapters containing the fundamentals as well as new research, this text: Examines the design, modeling, and control of the internal combustion engine and its key subsystems: the valve actuation system, the fuel system, and the ignition system Expounds on the operating principles of the transmission system, the design of the clutch actuation system, and transmission dynamics and control Explores the hybrid powertrain, including the hybrid architecture analysis, the hybrid powertrain model, and the energy management strategies Explains the electronic control unit and its functionalities--the software-in-the-loop and hardware-in-the-loop techniques for developing and validating control systems Design and Control of Automotive Propulsion Systems provides the background of the automotive propulsion system, highlights its challenges and opportunities, and shows the detailed procedures for calculating vehicle power demand and the associated powertrain operating conditions.




Design and Control of Automotive Propulsion Systems


Book Description

"This book presents analytical and experimental methods and achievements in designing mechanical and mechatronic driveline systems. Examples include various power dividing units, including symmetric and non-symmetric varieties, as well as open and lockable differentials, various limited slip differentials, no spins, and viscous clutches. The text presents logic control algorithms used to control vehicle power dividing units and designs of torque/power managing devices. The authors' approach to designing driveline systems is that characteristics and parameters of a driveline system and a set of power dividing units are established through vehicle performance and energy-fuel efficiency analysis and optimization"--




Propulsion Systems for Hybrid Vehicles


Book Description

Offering in-depth coverage of hybrid propulsion topics, energy storage systems and modelling, and supporting electrical systems, this book will be an invaluable resource for practising engineers and managers involved in all aspects of hybrid vehicle development, modelling, simulation and testing.




Modeling and Control of Engines and Drivelines


Book Description

Control systems have come to play an important role in the performance of modern vehicles with regards to meeting goals on low emissions and low fuel consumption. To achieve these goals, modeling, simulation, and analysis have become standard tools for the development of control systems in the automotive industry. Modeling and Control of Engines and Drivelines provides an up-to-date treatment of the topic from a clear perspective of systems engineering and control systems, which are at the core of vehicle design. This book has three main goals. The first is to provide a thorough understanding of component models as building blocks. It has therefore been important to provide measurements from real processes, to explain the underlying physics, to describe the modeling considerations, and to validate the resulting models experimentally. Second, the authors show how the models are used in the current design of control and diagnosis systems. These system designs are never used in isolation, so the third goal is to provide a complete setting for system integration and evaluation, including complete vehicle models together with actual requirements and driving cycle analysis. Key features: Covers signals, systems, and control in modern vehicles Covers the basic dynamics of internal combustion engines and drivelines Provides a set of standard models and includes examples and case studies Covers turbo- and super-charging, and automotive dependability and diagnosis Accompanied by a web site hosting example models and problems and solutions Modeling and Control of Engines and Drivelines is a comprehensive reference for graduate students and the authors’ close collaboration with the automotive industry ensures that the knowledge and skills that practicing engineers need when analysing and developing new powertrain systems are also covered.




Vehicle Propulsion Systems


Book Description

The authors of this text have written a comprehensive introduction to the modeling and optimization problems encountered when designing new propulsion systems for passenger cars. It is intended for persons interested in the analysis and optimization of vehicle propulsion systems. Its focus is on the control-oriented mathematical description of the physical processes and on the model-based optimization of the system structure and of the supervisory control algorithms.




Automotive Control Systems


Book Description

Written by two of the most respected, experienced and well-known researchers and developers in the field (e.g., Kiencke worked at Bosch where he helped develop anti-breaking system and engine control; Nielsen has lead joint research projects with Scania AB, Mecel AB, Saab Automobile AB, Volvo AB, Fiat GM Powertrain AB, and DaimlerChrysler. Reflecting the trend to optimization through integrative approaches for engine, driveline and vehicle control, this valuable book enables control engineers to understand engine and vehicle models necessary for controller design and also introduces mechanical engineers to vehicle-specific signal processing and automatic control. Emphasis on measurement, comparisons between performance and modelling, and realistic examples derive from the authors’ unique industrial experience . The second edition offers new or expanded topics such as diesel-engine modelling, diagnosis and anti-jerking control, and vehicle modelling and parameter estimation. With only a few exceptions, the approaches




Sustainable Automotive Technologies 2012


Book Description

The book on Sustainable Automotive Technologies aims to draw special attention to the research and practice focused on new technologies and approaches capable of meeting the challenges to sustainable mobility. In particular, the book features incremental and radical technical advancements that are able to meet social, economic and environmental targets in both local and global contexts. These include original solutions to the problems of pollution and congestion, vehicle and public safety, sustainable vehicle design and manufacture, new structures and materials, new power-train technologies and vehicle concepts. In addition to vehicle technologies, the book is also concerned with the broader systemic issues such as sustainable supply chain systems, integrated logistics and telematics, and end-of-life vehicle management. It captures selected peer reviewed papers accepted for presentation at the 4th International Conference on Sustainable Automotive Technologies, ICSAT2012, held at the RMIT, Melbourne, Australia.




Design and Development of Aerospace Vehicles and Propulsion Systems


Book Description

This book presents selected papers presented in the Symposium on Applied Aerodynamics and Design of Aerospace Vehicles (SAROD 2018), which was jointly organized by Aeronautical Development Agency (the nodal agency for the design and development of combat aircraft in India), Gas-Turbine Research Establishment (responsible for design and development of gas turbine engines for military applications), and CSIR-National Aerospace Laboratories (involved in major aerospace programs in the country such as SARAS program, LCA, Space Launch Vehicles, Missiles and UAVs). It brings together experiences of aerodynamicists in India as well as abroad in Aerospace Vehicle Design, Gas Turbine Engines, Missiles and related areas. It is a useful volume for researchers, professionals and students interested in diversified areas of aerospace engineering.




Vehicle Power Management


Book Description

Vehicle Power Management addresses the challenge of improving vehicle fuel economy and reducing emissions without sacrificing vehicle performance, reliability and durability. It opens with the definition, objectives, and current research issues of vehicle power management, before moving on to a detailed introduction to the modeling of vehicle devices and components involved in the vehicle power management system, which has been proven to be the most cost-effective and efficient method for initial-phase vehicle research and design. Specific vehicle power management algorithms and strategies, including the analytical approach, optimal control, intelligent system approaches and wavelet technology, are derived and analyzed for realistic applications. Vehicle Power Management also gives a detailed description of several key technologies in the design phases of hybrid electric vehicles containing battery management systems, component optimization, hardware-in-the-loop and software-in-the-loop. Vehicle Power Management provides graduate and upper level undergraduate students, engineers, and researchers in both academia and the automotive industry, with a clear understanding of the concepts, methodologies, and prospects of vehicle power management.