Design and Analysis of Centrifugal Compressors


Book Description

A comprehensive overview of fluid dynamic models and experimental results that can help solve problems in centrifugal compressors and modern techniques for a more efficient aerodynamic design. Design and Analysis of Centrifugal Compressors isacomprehensive overview of the theoretical fluid dynamic models describing the flow in centrifugal compressors and the modern techniques for the design of more efficient centrifugal compressors. The author — a noted expert in the field, with over 40 years of experience — evaluates relevant numerical and analytical prediction models for centrifugal compressors with special attention to their accuracy and limitations. Relevant knowledge from the last century is linked with new insights obtained from modern CFD. Emphasis is to link the flow structure, performance and stability to the geometry of the different compressor components. Design and Analysis of Centrifugal Compressors is an accessible resource that combines theory with experimental data and previous research with recent developments in computational design and optimization. This important resource Covers the basic information concerning fluid dynamics that are specific for centrifugal compressors and clarifies the differences with axial compressors Provides an overview of performance prediction models previously developed in combination with extra results from research conducted by the author Describes helpful numerical and analytical models for the flow in the different components in relation to flow stability, operating range and performance Includes the fundamental information for the aerodynamic design of more efficient centrifugal compressors Explains the use of computational fluid dynamics (CFD) for the design and analysis of centrifugal compressors Written for engineers, researchers and designers in industry as well as for academics specializing in the field, Design and Analysis of Centrifugal Compressors offers an up to date overview of the information needed for the design of more effective centrifugal compressors.




14th International Conference on Turbochargers and Turbocharging


Book Description

14th International Conference on Turbochargers and Turbocharging addresses current and novel turbocharging system choices and components with a renewed emphasis to address the challenges posed by emission regulations and market trends. The contributions focus on the development of air management solutions and waste heat recovery ideas to support thermal propulsion systems leading to high thermal efficiency and low exhaust emissions. These can be in the form of internal combustion engines or other propulsion technologies (eg. Fuel cell) in both direct drive and hybridised configuration. 14th International Conference on Turbochargers and Turbocharging also provides a particular focus on turbochargers, superchargers, waste heat recovery turbines and related air managements components in both electrical and mechanical forms.




Radial Flow Turbocompressors


Book Description

An introduction to the theory and engineering practice that underpins the component design and analysis of radial flow turbocompressors. Drawing upon an extensive theoretical background and years of practical experience, the authors provide descriptions of applications, concepts, component design, analysis tools, performance maps, flow stability, and structural integrity, with illustrative examples. Features wide coverage of all types of radial compressor over many applications unified by the consistent use of dimensional analysis. Discusses the methods needed to analyse the performance, flow, and mechanical integrity that underpin the design of efficient centrifugal compressors with good flow range and stability. Includes explanation of the design of all radial compressor components, including inlet guide vanes, impellers, diffusers, volutes, return channels, de-swirl vanes and side-streams. Suitable as a reference for advanced students of turbomachinery, and a perfect tool for practising mechanical and aerospace engineers already within the field and those just entering it.




Design, Modeling and Reliability in Rotating Machinery


Book Description

Design, Modeling, and Reliability in ROTATING MACHINERY This broad collection of current rotating machinery topics, written by industry experts, is a must-have for rotating equipment engineers, maintenance personnel, students, and anyone else wanting to stay abreast with current rotating machinery concepts and technology. Rotating machinery represents a broad category of equipment, which includes pumps, compressors, fans, gas turbines, electric motors, internal combustion engines, and other equipment, that are critical to the efficient operation of process facilities around the world. These machines must be designed to move gases and liquids safely, reliably, and in an environmentally friendly manner. To fully understand rotating machinery, owners must be familiar with their associated technologies, such as machine design, lubrication, fluid dynamics, thermodynamics, rotordynamics, vibration analysis, condition monitoring, maintenance practices, reliability theory, and other topics. The goal of the “Advances in Rotating Machinery” book series is to provide industry practitioners a time-savings means of learning about the most up-to-date rotating machinery ideas and best practices. This three-book series will cover industry-relevant topics, such as design assessments, modeling, reliability improvements, maintenance methods and best practices, reliability audits, data collection, data analysis, condition monitoring, and more. This first volume begins the series by focusing on rotating machinery design assessments, modeling and analysis, and reliability improvement ideas. This broad collection of current rotating machinery topics, written by industry experts, is a must-have for rotating equipment engineers, maintenance personnel, students, and anyone else wanting to stay abreast with current rotating machinery concepts and technology. Design, Modeling, and Reliability in Rotating Machinery covers, among many other topics: Rotordynamics and torsional vibration modeling Hydrodynamic bearing design theory and current practices Centrifugal and reciprocating compressor design and analysis Centrifugal pump design, selection, and monitoring General purpose steam turbine sizing




Radial Flow Turbocompressors


Book Description

An introduction to the theory and engineering practice that underpins the component design and analysis of radial flow turbocompressors. Drawing upon an extensive theoretical background and years of practical experience, the authors provide descriptions of applications, concepts, component design, analysis tools, performance maps, flow stability, and structural integrity, with illustrative examples. Features wide coverage of all types of radial compressor over many applications unified by the consistent use of dimensional analysis. Discusses the methods needed to analyse the performance, flow, and mechanical integrity that underpin the design of efficient centrifugal compressors with good flow range and stability. Includes explanation of the design of all radial compressor components, including inlet guide vanes, impellers, diffusers, volutes, return channels, de-swirl vanes and side-streams. Suitable as a reference for advanced students of turbomachinery, and a perfect tool for practising mechanical and aerospace engineers already within the field and those just entering it.










Centrifugal Compressors


Book Description

A mechanical engineer with a Pennsylvania turbomachinery company, A ungier describes his own system and strategy for designing and analyzing centrifugal compressor aerodynamics. To address the novice as well as the experienced in the field, he presents the basic thermodynamic and fluid dynamic principles, empirical models, and key numerical methods that form the basis of his methods. His strategy, or design practice, he found harder to describe because it involves a process of reasoning rather than following an established set of principles. He recognizes that his is only one of many possible methods, but makes no effort to compare or contrast his with any other.




Exergy for A Better Environment and Improved Sustainability 1


Book Description

This multi-disciplinary book presents the most recent advances in exergy, energy, and environmental issues. Volume 1 focuses on fundamentals in the field and covers current problems, future needs, and prospects in the area of energy and environment from researchers worldwide. Based on selected lectures from the Seventh International Exergy, Energy and Environmental Symposium (IEEES7-2015) and complemented by further invited contributions, this comprehensive set of contributions promote the exchange of new ideas and techniques in energy conversion and conservation in order to exchange best practices in "energetic efficiency". Included are fundamental and historical coverage of the green transportation and sustainable mobility sectors, especially regarding the development of sustainable technologies for thermal comforts and green transportation vehicles. Furthermore, contributions on renewable and sustainable energy sources, strategies for energy production, and the carbon-free society constitute an important part of this book. Exergy for Better Environment and Sustainability, Volume 1 will appeal to researchers, students, and professionals within engineering and the renewable energy fields.