Broadband UV-, VIS-, and IR-Radiometric, Photometric, Color, and Temperature Measurements


Book Description

In most field applications, broadband measurements are used where the spectral product of the source distribution and the meter’s spectral responsivity is measured. This book discusses detector-based radiometric, photometric, color, radiation-temperature, digital imaging-system, and LED measurements. It also shows that, while in photometry, the meter’s standard response covers only the visible, broadband measurements in the UV and IR require different standards. To avoid large errors when using a traditional detector- or source-standard, where the differences in the source distributions and in the meter’s responsivities produce large errors, the signal measurement procedure itself must be standardized. To satisfy the steps of the procedure, selected or properly designed meters should be used. This book is a guide to performing uniform broadband measurements with low uncertainty.







Optical Detector and Radiometer Standards


Book Description

This book discusses modern, user-friendly radiometric practices that make it possible to convert from traditional source-based optical radiation measurements to the more efficient and higher accuracy detector-based applications and calibrations. It considers improved performance optical detector and radiometer standards including photometers and tristimulus colorimeters, and describes research-based design considerations, measurement of radiometric, optical, and electronic characteristics, and comparison of absolute-, transfer-, and working-standard detectors and radiometers from the ultraviolet (UV) to the infrared (IR) range. The book will serve to guide the optical radiation measurement community, researchers, manufacturers, calibration laboratories, students, and practicing engineers to switch from the old and limited-use measurement methods to the higher performance detector-based applications. The radiometer standards discussed here can be used to produce wide range radiometric, photometric, colour, and radiation temperature measurements with low uncertainty.




Optical Detector Applications for Radiometric Measurements


Book Description

The recently developed optical radiation detectors need well-designed radiometers to perform improved radiometric, photometric, colorimetric, and radiation-temperature measurements. They can produce higher performance than traditionally used blackbody sources and lamps in wider application areas. This book presents research-based material in this field that has been implemented, realized, tested, verified, and evaluated. It can be used as a reference source for students, practicing scientists, engineers, technicians, instrument manufacturers and measurement/calibration people to learn, design, build, select, and use new generation radiometers. The book describes a number of design issues and applications to implement the correct input geometry for detectors to measure radiometric (power, irradiance and radiance) quantities, and DC, AC, and pulsed electrical output signals.




Radiometric Calibration: Theory and Methods


Book Description

Radiometric Calibration: Theory and Methods contains an engineering development of the theories and methods of radiometric calibration. This book is organized into 18 chapters. Chapters I to V present an introduction to nomenclature, radiation geometry, and blackbody radiation that serves to simplify the discussion of the calibration theory. The rest of the chapters provide the theory of sensor calibration, reviewing numerous examples in which laboratory equipment and specific techniques are described. Algorithms are also covered for digital computer processing as appropriate for each functional aspect of sensor characterization. This publication is intended for engineers and applied physicists concerned with sensor calibration and the interpretation of sensor data.




The Properties of Optical Radiation Detectors and Radiometers


Book Description

This is the first book to investigate the improved performance of optical radiation detectors developed from the ultraviolet to the far-infrared in the past two decades. The development and applications of these improved detectors opened up a new era in radiometric, photometric, colorimetric, and radiation-temperature measurements where earlier blackbody sources and lamps were used with lower performance and in limited application areas. This book will serve to help students, practicing scientists, engineers, technicians, and instrument manufacturers to learn, compare and select the proper detectors for building, using, and calibrating opto-electronic instruments with SI traceability and lowered measurement uncertainty in extended application areas.







Calibration Laboratories


Book Description