Deterministic Aspects of Mathematical Demography


Book Description

Mathematical Demography, the study of population and its analysis through mathematical models, has received increased interest in the mathematical com munity in recent years. It was not until the twentieth century, however, that the study of population, predominantly human population, achieved its math ematical character. The subject of mathematical demography can be viewed from either a deterministic viewpoint or from a stochastic viewpoint. For the sake of brevity, stochastic models are not included in this work. It is, therefore, my intention to consider only established deterministic models in this discussion, starting with the life table as the earliest model, to a generalized matrix model which is developed in this treatise. These deterministic models provide sufficient de velopment and conclusions to formulate sound mathematical population analy sis and estimates of population projections. It should be noted that although the subject of mathematical demography focuses on human populations, the development and results may be applied to any population as long as the preconditions that make the model valid are maintained. Information concerning mathematical demography is at best fragmented.




Mathematical Demography


Book Description

Mathematical demography is the centerpiece of quantitative social science. The founding works of this field from Roman times to the late Twentieth Century are collected here, in a new edition of a classic work by David R. Smith and Nathan Keyfitz. Commentaries by Smith and Keyfitz have been brought up to date and extended by Kenneth Wachter and Hervé Le Bras, giving a synoptic picture of the leading achievements in formal population studies. Like the original collection, this new edition constitutes an indispensable source for students and scientists alike, and illustrates the deep roots and continuing vitality of mathematical demography.




An Introduction to Structured Population Dynamics


Book Description

Interest in the temporal fluctuations of biological populations can be traced to the dawn of civilization. How can mathematics be used to gain an understanding of population dynamics? This monograph introduces the theory of structured population dynamics and its applications, focusing on the asymptotic dynamics of deterministic models. This theory bridges the gap between the characteristics of individual organisms in a population and the dynamics of the total population as a whole. In this monograph, many applications that illustrate both the theory and a wide variety of biological issues are given, along with an interdisciplinary case study that illustrates the connection of models with the data and the experimental documentation of model predictions. The author also discusses the use of discrete and continuous models and presents a general modeling theory for structured population dynamics. Cushing begins with an obvious point: individuals in biological populations differ with regard to their physical and behavioral characteristics and therefore in the way they interact with their environment. Studying this point effectively requires the use of structured models. Specific examples cited throughout support the valuable use of structured models. Included among these are important applications chosen to illustrate both the mathematical theories and biological problems that have received attention in recent literature.




Complexity, Language, and Life: Mathematical Approaches


Book Description

In May 1984 the Swedish Council for Scientific Research convened a small group of investigators at the scientific research station at Abisko, Sweden, for the purpose of examining various conceptual and mathematical views of the evolution of complex systems. The stated theme of the meeting was deliberately kept vague, with only the purpose of discussing alternative mathematically based approaches to the modeling of evolving processes being given as a guideline to the participants. In order to limit the scope to some degree, it was decided to emphasize living rather than nonliving processes and to invite participants from a range of disciplinary specialities spanning the spectrum from pure and applied mathematics to geography and analytic philosophy. The results of the meeting were quite extraordinary; while there was no intent to focus the papers and discussion into predefined channels, an immediate self-organizing effect took place and the deliberations quickly oriented themselves into three main streams: conceptual and formal structures for characterizing sys tem complexity; evolutionary processes in biology and ecology; the emergence of complexity through evolution in natural lan guages. The chapters presented in this volume are not the proceed ings of the meeting. Following the meeting, the organizers felt that the ideas and spirit of the gathering should be preserved in some written form, so the participants were each requested to produce a chapter, explicating the views they presented at Abisko, written specifically for this volume. The results of this exercise form the volume you hold in your hand.




Demography


Book Description

This comprehensive, introductory text takes an applied, interdisciplinary approach. Because one author is a sociologist and the other a demographer, the text introduces perspectives from many different disciplines. The most applied book on the market, Demography: The Science of Population teaches students how to use the multitude of demographic resources available to them as consumers of data. Using case studies throughout to illustrate key concepts in a realistic and concrete manner, the authors also draw examples from recent U.S. Census data, United Nations and World Bank reports, tables from the National Center for Health Statistics, and other U.S. state- and county-level sources. New to the Second Edition This second edition is divided into four main parts; each part begins with a short introduction, and all chapters include end-of-chapter summaries. All tables, related narrative, and graphics have been updated to include data from the 2000 and 2010 census counts, more recent estimates for the United States—especially the American Community Survey—and comparable new data from international sources (e.g. World Bank, Population Research Bureau World Data Sheet). Several new figures have been added throughout the text. Part I: An Overview of Population Science, introduces the field of demography and provides a summary of its subject matter. The chapters in this part have been reorganized to reflect changes in the discipline. Chapter 1 now includes a new “the study of populations” section, a shorter Chapter 2 covers population size, and its former discussion of structure has been moved to Chapter 3. This de-emphasizes the history of population science to some extent and increases emphasis on population size as the key demographic variable. Chapter 4 presents the main principles and analytical techniques associated with the three “static” characteristics of populations: size, structure, and geographic distribution. Part II: Population Dynamics: Vital Events and Growth, reflects the wealth of data and analytical techniques now available from The U.S. Centers for Disease Control and Prevention (CDC) and its “Wonder” utility. The first three chapters focus on the vital events of birth, death, and migration. The final chapter in this part brings this material together in a discussion of population growth: its measurement, its history, and current related policy concerns. Part III: Population Models, introduces the principles of life table analysis, population estimation, and projection. This material has been simplified and updated. Chapter 9, The Life Table: An Introduction, has been revised to accord with the new federal alignment for vital statistics between the CDC and National Institute for Health Statistics. Life tables from non-U.S. sources are increased in number and in detailed functions. Part IV: Demography in Application, provides overviews of population policy, the environment, and demographic resources, along with a brief postscript on population in the larger scheme of things. What appeared as two appendices in the first edition, one on the history of population policy and one on tourism as a type of international migration, have been combined to create a new Chapter 14. The end-of-chapter material has been shortened and now contains a summary, key terms, and notes. A full-color enhanced eText is also available, and the second edition is accompanied by a teaching and learning package, including instructor’s manual, test bank, lecture slides, and a companion website that offers students additional resources, flashcards, and self-study quizzes.




Mathematics in Population Biology


Book Description

The formulation, analysis, and re-evaluation of mathematical models in population biology has become a valuable source of insight to mathematicians and biologists alike. This book presents an overview and selected sample of these results and ideas, organized by biological theme rather than mathematical concept, with an emphasis on helping the reader develop appropriate modeling skills through use of well-chosen and varied examples. Part I starts with unstructured single species population models, particularly in the framework of continuous time models, then adding the most rudimentary stage structure with variable stage duration. The theme of stage structure in an age-dependent context is developed in Part II, covering demographic concepts, such as life expectation and variance of life length, and their dynamic consequences. In Part III, the author considers the dynamic interplay of host and parasite populations, i.e., the epidemics and endemics of infectious diseases. The theme of stage structure continues here in the analysis of different stages of infection and of age-structure that is instrumental in optimizing vaccination strategies. Each section concludes with exercises, some with solutions, and suggestions for further study. The level of mathematics is relatively modest; a "toolbox" provides a summary of required results in differential equations, integration, and integral equations. In addition, a selection of Maple worksheets is provided. The book provides an authoritative tour through a dazzling ensemble of topics and is both an ideal introduction to the subject and reference for researchers.




Mathematical Models in Biology


Book Description

Mathematical Models in Biology is an introductory book for readers interested in biological applications of mathematics and modeling in biology. A favorite in the mathematical biology community, it shows how relatively simple mathematics can be applied to a variety of models to draw interesting conclusions. Connections are made between diverse biological examples linked by common mathematical themes. A variety of discrete and continuous ordinary and partial differential equation models are explored. Although great advances have taken place in many of the topics covered, the simple lessons contained in this book are still important and informative. Audience: the book does not assume too much background knowledge--essentially some calculus and high-school algebra. It was originally written with third- and fourth-year undergraduate mathematical-biology majors in mind; however, it was picked up by beginning graduate students as well as researchers in math (and some in biology) who wanted to learn about this field.




Introduction to Theoretical Population Genetics


Book Description

This book covers those areas of theoretical population genetics that can be investigated rigorously by elementary mathematical methods. I have tried to formulate the various models fairly generally and to state the biological as sumptions quite explicitly. I hope the choice and treatment of topics will en able the reader to understand and evaluate detailed analyses of many specific models and applications in the literature. Models in population genetics are highly idealized, often even over idealized, and their connection with observation is frequently remote. Further more, it is not practicable to measure the parameters and variables in these models with high accuracy. These regrettable circumstances amply justify the use of appropriate, lucid, and rigorous approximations in the analysis of our models, and such approximations are often illuminating even when exact solu tions are available. However, our empirical and theoretical limitations justify neither opaque, incomplete formulations nor unconvincing, inadequate analy ses, for these may produce uninterpretable, misleading, or erroneous results. Intuition is a principal source of ideas for the construction and investigation of models, but it can replace neither clear formulation nor careful analysis. Fisher (1930; 1958, pp. x, 23-24, 38) not only espoused similar ideas, but he recognized also that our concepts of intuition and rigor must evolve in time. The book is neither a review of the literature nor a compendium of results. The material is almost entirely self-contained. The first eight chapters are a thoroughly revised and greatly extended version of my published lecture notes (Nagylaki, 1977a).




Sensitivity Analysis: Matrix Methods in Demography and Ecology


Book Description

This open access book shows how to use sensitivity analysis in demography. It presents new methods for individuals, cohorts, and populations, with applications to humans, other animals, and plants. The analyses are based on matrix formulations of age-classified, stage-classified, and multistate population models. Methods are presented for linear and nonlinear, deterministic and stochastic, and time-invariant and time-varying cases. Readers will discover results on the sensitivity of statistics of longevity, life disparity, occupancy times, the net reproductive rate, and statistics of Markov chain models in demography. They will also see applications of sensitivity analysis to population growth rates, stable population structures, reproductive value, equilibria under immigration and nonlinearity, and population cycles. Individual stochasticity is a theme throughout, with a focus that goes beyond expected values to include variances in demographic outcomes. The calculations are easily and accurately implemented in matrix-oriented programming languages such as Matlab or R. Sensitivity analysis will help readers create models to predict the effect of future changes, to evaluate policy effects, and to identify possible evolutionary responses to the environment. Complete with many examples of the application, the book will be of interest to researchers and graduate students in human demography and population biology. The material will also appeal to those in mathematical biology and applied mathematics.




Applied Mathematical Ecology


Book Description

The Second Autumn Course on Mathematical Ecology was held at the Intern ational Centre for Theoretical Physics in Trieste, Italy in November and December of 1986. During the four year period that had elapsed since the First Autumn Course on Mathematical Ecology, sufficient progress had been made in applied mathemat ical ecology to merit tilting the balance maintained between theoretical aspects and applications in the 1982 Course toward applications. The course format, while similar to that of the first Autumn Course on Mathematical Ecology, consequently focused upon applications of mathematical ecology. Current areas of application are almost as diverse as the spectrum covered by ecology. The topiys of this book reflect this diversity and were chosen because of perceived interest and utility to developing countries. Topical lectures began with foundational material mostly derived from Math ematical Ecology: An Introduction (a compilation of the lectures of the 1982 course published by Springer-Verlag in this series, Volume 17) and, when possible, progressed to the frontiers of research. In addition to the course lectures, workshops were arranged for small groups to supplement and enhance the learning experience. Other perspectives were provided through presentations by course participants and speakers at the associated Research Conference. Many of the research papers are in a companion volume, Mathematical Ecology: Proceedings Trieste 1986, published by World Scientific Press in 1988. This book is structured primarily by application area. Part II provides an introduction to mathematical and statistical applications in resource management.