Fluorescence-Based Biosensors


Book Description

One of the major challenges of modern biology and medicine consists in finding means to visualize biomolecules in their natural environment with the greatest level of accuracy, so as to gain insight into their properties and behaviour in a physiological and pathological setting. This has been achieved thanks to the design of novel imaging agents, in particular to fluorescent biosensors. Fluorescence Biosensors comprise a large set of tools which are useful for fundamental purposes as well as for applications in biomedicine, drug discovery and biotechnology. These tools have been designed and engineered thanks to the combined efforts of chemists and biologists over the last decade, and developed hand in hand together with imaging technologies. This volume will convey the many exciting developments the field of fluorescent biosensors and reporters has witnessed over the recent years, from concepts to applications, including chapters on the chemistry of fluorescent probes, on technologies for monitoring protein/protein interactions and technologies for imaging biosensors in cultured cells and in vivo. Other chapters are devoted to specific examples of genetically-encoded reporters, or to protein and peptide biosensors, together with examples illustrating their application to cellular and in vivo imaging, biomedical applications, drug discovery and high throughput screening. Contributions from leading authorities Informs and updates on all the latest developments in the field




Introduction to Fluorescence Sensing


Book Description

Fluorescence is the most popular technique in chemical and biological sensing because of its ultimate sensitivity, high temporal and spatial resolution and versatility that enables imaging within the living cells. It develops rapidly in the directions of constructing new molecular recognition units, new fluorescence reporters and in improving sensitivity of response up to detection of single molecules. Its application areas range from control of industrial processes to environment monitoring and clinical diagnostics. This book provides systematic knowledge of basic principles in design of fluorescence sensing and imaging techniques together with critical analysis of recent developments. Being a guide for students and young researchers, it also addresses professionals involved in active basic and applied research. Making a strong link between education, research and product development, this book discusses prospects for future progress.




Introduction to Fluorescence Sensing


Book Description

Fluorescence is the most popular technique in chemical and biological sensing and this book provides systematic knowledge of basic principles in the design of fluorescence sensing and imaging techniques together with critical analysis of recent developments. Its ultimate sensitivity, high temporal and spatial resolution and versatility enables high resolution imaging within living cells. It develops rapidly in the directions of constructing new molecular recognition units, new fluorescence reporters and in improving sensitivity of response, up to the detection of single molecules. Its application areas range from the control of industrial processes to environmental monitoring and clinical diagnostics. Being a guide for students and young researchers, it also addresses professionals involved in basic and applied research. Making a strong link between education, research and product development, this book discusses prospects for future progress.




Fluorescent and Luminescent Probes for Biological Activity


Book Description

The use of fluorescent and luminescent probes to measure biological function has increased dramatically since publication of the First Edition due to their improved speed, safety, and power of analytical approach. This eagerly awaited Second Edition, also edited by Bill Mason, contains 19 new chapters and over two thirds new material, and is a must for all life scientists using optical probes. The contents include discussion of new optical methodologies for detection of proteins, DNA and other molecules, as well as probes for ions, receptors, cellular components, and gene expression. Emerging and advanced technologies for probe detection such as confocal laser scanning microscopy are also covered. This book will be essential for those embarking on work in the field or using new methods to enhance their research. TOPICS COVERED: * Single and multiphoton confocal microscopy * Applications of green fluorescent protein and chemiluminescent reporters to gene expression studies * Applications of new optical probes for imaging proteins in gels * Probes and detection technologies for imaging membrane potential in live cells * Use of optical probes to detect microorganisms * Raman and confocal raman microspectroscopy * Fluorescence lifetime imaging microscopy * Digital CCD cameras and their application in biological microscopy




Fluorescence Sensors and Biosensors


Book Description

Fluorescence-based sensing is a significant technique used in prominent fields such as fluorescence-activated cell sorting, DNA sequencing, high-throughput screening, and clinical diagnostics. Fluorescence Sensors and Biosensors emphasizes the most recent developments and emerging technologies with the broadest impacts. The text begins with the development of aptamers (oligoribonucleotides) and biorecognition techniques based on periplasmic binding proteins. The following chapters review the molecular beacon approach for DNA recognition, describe resonance energy transfer (FRET) in sensing, and present the use of carbonic anhydrase recognition platform for metal ion determination and imaging. The book explores the advantages of fluorophores, fluorescent labels, sensor and assay construction, metal-enhanced fluorescence, phosphorescent labels, and lab-on-a-chip applications. It also describes new anion-selective fluorescent probes used as analytes in clinical determinations. The final chapters highlight the application of fluorescence sensing technology to several practical problems, such as the development of planar waveguide biosensors for clinical diagnostics and the adaptation of fluorescence-based sensing approaches for biochemical production by fermentation. The book also discusses the measurement of analytes, such as free zinc ions, at ultratrace levels in biological specimens. Written by internationally renowned authors in their fields, Fluorescence Sensors and Biosensors provides an up-to-date account of fluorescence-based sensors focused on practical applications in biotechnology, analytical chemistry, and biomedicine.




Molecular Fluorescent Sensors for Cellular Studies


Book Description

Molecular Fluorescent Sensors for Cellular Studies Enables readers to fully understand the fundamentals and chemical principles of fluorescent sensing and the design of fluorescent sensors Fluorescent sensors are able to provide specific chemical information about cells and can be invaluable in understanding processes that underpin health and disease. Molecular Fluorescent Sensors for Cellular Studies provides an avenue into and overview of currently available fluorescent sensing technology and its application to biological imaging. This book aims to help the reader understand the principles of fluorescence and the mechanisms by which fluorescent sensors operate in order to ensure appropriate and optimal use of sensors. Key applications of fluorescent sensing are presented, with explanations not only of how new sensors can be designed, but also how existing sensors can be applied to various biological settings and conditions. Clear and engaging schematics throughout the book explain chemical principles of sensing to the non-expert. Discusses the breadth of fluorescent sensors, from commercially available sensors to those reported in literature which are yet to be used widely Explains how fluorescent sensors operate for appropriate and optimal use from a theoretical standpoint Provides guidance on how to achieve optimal use of fluorescent sensors in practical settings Summarizes the principles behind fluorescent sensors and their design This work will be an invaluable resource for postgraduates and professionals in the fields of microscopy, bioimaging, and diagnostic imaging who wish to harness the information to improve practical applications and to gain key knowledge surrounding the many facets of fluorescent sensing. It is also of interest to medical and biological researchers working across industry, universities and medical institutes.




Fluorescence Probes for Sensing


Book Description

The rapid progress in sensor science in recent years has resulted in the development of fluorescence probes with enhanced analytical capabilities. Because of the vast evolution of this research field, therefore, we have decided to combine all the research articles published in "Fluorescence Probes and Sensors" for a Special Issue (SI) book of Sensors which was focusing on the important role sensors play in "Fluorescent Probes and Sensors". Fluorescence novel Probes make an ideal candidate for promising applications in biological analytes and environmental monitoring. Fluorescent probes along with metal complexes have been developed as a new class of fluorophores with excellent properties. This book illustrating the suitability of newly developed sensors for fluorescent analysis applications, as well as describing novel applications of established sensors in solving real life analytical problems.




Functional Fluorescent Materials


Book Description

Functional Fluorescent Materials: Applications in Sensing, Bioimaging, and Optoelectronics explains functional molecular probes (organic/inorganic materials, polymers, nanomaterials), with a focus on those that represent spectroscopic properties with detection of different analytes and specific roles in molecular recognition and their applications. It broadly covers molecular recognition to applications of fluorescence reporters, starting from optoelectronic properties of materials, detection of heavy metals, through biological macromolecules, and further to a living cell, tissue imaging, and theranostics. Features: • Covers different aspects of fluorescence spectroscopy ranging from chemical, physical, and biological aspects along with optoelectronic properties, mechanisms, and applications. • Describes all types of chemical and functionalized fluorescent nanomaterials. • Provides additional information on different kinds of fluorescence reporters. • Explains the concept of fluorescence spectroscopy and its role in human health care. • Discusses changes in static and dynamic properties of fluorescent probes and molecular recognitions. This book is aimed at graduate students and researchers in materials, chemical engineering, and engineering physics.




Fluorescent Energy Transfer Nucleic Acid Probes


Book Description

Fluorescent nucleic acid probes, which use energy transfer, include such constructs as molecular beacons, molecular break lights, Scorpion primers, TaqMan probes, and others. These probes signal detection of their targets by changing either the intensity or the color of their fluorescence. Not surpr- ingly, these luminous, multicolored probes carry more flashy names than their counterparts in the other fields of molecular biology. In recent years, fluor- cent probes and assays, which make use of energy transfer, have multiplied at a high rate and have found numerous applications. However, in spite of this explosive growth in the field, there are no manuals summarizing different p- tocols and fluorescent probe designs. In view of this, the main objective of Fluorescent Energy Transfer Nucleic Acid Probes: Designs and Protocols is to provide such a collection. Oligonucleotides with one or several chromophore tags can form fluor- cent probes capable of energy transfer. Energy transport within the probe can occur via the resonance energy transfer mechanism, also called Förster tra- fer, or by non-Förster transfer mechanisms. Although the probes using Förster transfer were developed and used first, the later non-Förster-based probes, such as molecular beacons, now represent an attractive and widely used option. The term “fluorescent energy transfer probes” in the title of this book covers both Förster-based fluorescence resonance energy transfer (FRET) probes and probes using non-FRET mechanisms. Energy transfer probes serve as molecule-size sensors, changing their fluorescence upon detection of various DNA reactions.